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ABSTRACT 

'A method for calculating the response of simply supported windows to 

ionic booms has been developed. The procedure is based on a linear one- 

degree-of-freedom analysis plus estimates of the importance of nonlinear 

and multimodal effects. Effects of stress raisers and of movement followed 

by impact of loose windows are not considered. 

Significant contributions to the maximum stress in windows subjected 

to 2 psf sonic booms are made by large deflections (nonlinearitles), modes 

above the fundamental, and the Internal pressure built up in the building 

by the boom. 

An attempt to estimate statistically the occurrence of window failure 

under 2 psf booms was frustrated by the lack of precise knowledge of the 

statistical distribution of glass strength. 
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PREFACE 

This report is one of a series of technical reports dealing with 

various effects of sonic booms. The research was sponsored by the 

National Sonic Boom Evaluation Office of the Air Force. 
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RESPONSE OF WINDOWS TO SONIC BOOMS 

SECTION I 

INTRODUCTION 

The response of windows to sonic boom loadings presents an impor- 

tant problem in the evaluation of sonic boom effects on structures. Ex- 

perimental studies which have been undertaken to ascertain the effects 

of booms on windows of various sizes are those of Maglierl, Huckel and 

Parrott (1961), Blume and Associates (1965), and Freynik (1963). These 

test programs have shown that nearly all windows are broken by boom 

pressures of 100 psf and that a few will break at pressures of 10 or 20 

psf. No lower limit has been established on the pressure required to 

break a window. These three studies and the static tests of Bowles and 

Sugarman (1952) and Orr (1957) have shown that windows have a nonlinear 

behavior even at low pressures. 

Nonlinearities become important when the central deflection exceeds 

one-half the plate thickness, and, for usual window dimensions, static 

pressures of 1 psf to 10 psf will cause such a deflection. The conse- 

quence of the nonlinearities is that stress and deflection are not pro- 

portional to pressure or to each other. Hence, there has been consider- 

able difficulty in interpreting experimental results and in extrapolating 

the findings.  In most cases the data were not correlated with theory. 

In the dynamic tests the pressures acting on the window were not measured, 

only the nominal pressure in the vicinity was measured.  In cases where 

window deflection was measured, only maximum excursion was obtained. 

Knowledge of window behavior requires careful procuring of the right 

data and data reduction based on a theoretical analysis of the window 

motion. This present study is intended to bring together available theo- 

retical knowledge on the subject to 

1. indicate the experimental parameters which should be measured, 

2. provide a basis for data reduction, 

3. provide a basis for prediction of window stresses and deflec- 

tions in response to booms, 



4.  indicate those areas where further experimental or theoretical 

work is most needed. 

The study is primarily concerned with boom loadings with peak pressures 

of about 2 psf. 

Net loading on a window is a function of the stiffness and volume 

of the structure in which the window occurs. Response of a window to 

loading is highly nonlinear and depends on the participation of several 

deflection modes. Because of this complexity the problem has not been 

solved analytically but has been approximated by considering (1) general 

properties of windows, (2) the linear response of windows in the funda- 

mental mode, (3) linear response in all modes, (4) effect of internal 

pressure on the response, and (5) nonlinear response in the first mode. 

By comparing the results of (2), (3), (4), and (5), we have estimated 

the nonlinear, multlmodal response. Finally, using the calculated res- 

ponse, the statistical probability of window damage was estimated. 



SECTION II 

GENERAL NATURE OF WINDOWS 

To calculate window response, we need to know the normal mounting 

conditions of window??, strength and modulus of glass, common bir.es of 

windows, and the natural frequencies of windows. 

Window glass is mounted either with glazing nails and putty or in 

a rubber seal.  It may be assumed that the edge conditions can bo approxi- 

mated by a simple support with a moveable edge. This assumption has been 

studied by Freynik (1963). Freynik used square windows mounted with 

glazing nails and putty. He compared empirical natural frequencies with 

those from vioratlon theory for simple supported plates, and compared 

measured stresses with theoretical values. Both comparisons showed that 

the experimental results could be explained on ehe basis of a simple 

support condition. The results of Bowles and Sugarman (1952) in static 

testing of windows confirms the existence of the simp1.«;, moveable boun- 

dary condition. 

An unknown, but probably large, fraction of existing windows are 

loose in their mountings and/or have stress raisers present in poor mount- 

ings.  The results of this report cannot be applied to such defective 

windows since the above assumption of simple support edge conditions does 

not apply. Our results should apply well to calculation of the response 

of new, well-mounted windows such as those usually encountered in labora- 

tory tests or field test structures. 

Strength of window glass has been reported by R. W. McKinley (1964); 

values for strength and other parameters of glass windows are UUed in 

Table 1. Strengths were determined by the standard ASTM (1965) heam test 

procedure.  Flexural strength was evaluated as failure in tension: glass 

falls without any significant amount of plastic deformation so that the 

yield value equals the ultimate strength. There is considerable scatter 

in results from strength tests. McKinley (1964) states that the strengths 

are normally distributed and suggests using a coefficient of variation of 

25$ (that is, the standard deviation is one-fourth the mean strength). 



TABLE I 

PROPERTIES OF WINDOW GLASS 
(from McKinley) 

Property Va lue 

Flcxural Strength 
Short duration:   sonic booms, blasts 6600 psi 
One minute loading: wind 4400 psi 

Elastic modulus 107  psi 
Density 0.09 lb/in3 

Poiseon's ratio 0.23 

On the other hand, Shand (1958) states that the distribution is not nor- 

mal, but skewed so that the mean is larger than median and mode; possibly 

a lognormal or Poisson distribution would fit the data. 

Normal sizes for glass panes are dictated by building code require- 

ments which in turn are based on wind loadings and nominal factors of 

safety. The allowed thicknesses for panes of various areas as specified 

in the Uniform Building Code (1964) are shown in the first two columns 

of Table 2. The values are for a wind loading of 20 psf. Dimension of 

the window may be combined to form the dimensionless parameter, a/h, 

where a is the length of one side of a square pane and h is the thickness. 

For a rectangular pane, a is taken as the square root of the area.  In a 

square pane the a/h ratio and the pressure govern the magnitude of stress 

in the pane under uniform loading. From the building code requirements, 

the maximum allowable ratio (a/h) was determined and listed in column 3 

of Table 2.  If it is presumed that a builder will always use the minimum 

thickness permitted, then we can also obtain a minimum ratio as in column 

4 of Table 2. Thi» •oinimuui value of a/h «as computed for «sei! thickness 

using the value of a associated with the next smaller t'kickness. The 

minimum values are listed opposite the thickness values used in each com- 

putation. 



TABLE 2 

Nominal Sizes of Square Panec* 

Area Thickness Maximum Allowed Minimum Probable 
a» t, ./h a/h              [ 

i         (ft») „   tin.) (dimensionlesb) (dimenalonless) 

5.8 0.085 340 141** 
10.85 0.115 343 251              1 
12 1/8 332 316 
27 3/16 332 222 

48 7/32,   1/4 380, 333 285,   242 
75 5/16 333 266                j 

108 3/8 333 277 
190 i/2 331 250 

*   Data in Columns (l) and (2) are from the Uniform Building Code (1964) 
**  Based on a 12 x 12-inch window. 

The listings in Table 2 show that the range of a/h values is not 

very large. Since most of the valuee are between 220 and 340, this range 

was used in the analyses of this report. 

The natural frequencies of windows are important for studies of dy- 

namic loadings. For this analysis the windows are treated as simply 

supported plates undergoing small deflections. This approach appears to 

be adequate for deflections which are less than the pane thickness. 

Figure 1 is a graph of natural frequency as a function of the area-to- 

thickness ratio, calculated from the equation shown on the figure. Square 

and rectangular panes with several aspect ratios are included and the 

first three frequencies are considered. These three frequencies corres- 

pond to modes in which there are one maximum point of deflection, three 

maxima, and nine maxima. The range of area-to-thlckness ratios for var- 

ious glass thickiieaeos is also shown to indicate the probable frequencies 

which are encountered. 
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FIG. 1    NATURAL   FREQUENCIES OF  GLASS PANES 



SECTION III 

DEFLECTION AND STRESS OF WINDOWS UNDER SONIC BOOMS 

A.  Problem Statement 

To determine the deflection and stress of windows under booms let 

us examine qualitatively pressures on the buildings and reaction of the 

building.  Characteristic boom pressures related to structure reaction 

are shown in Fig. 2.  In the free field the pressure rises sharply. At 

the front wall of the building the pressure shows a sharp rise and evi- 

dence of reflections from the ground and wall. The boom pressure at the 

rear shows a more gradual rise and foists that on the front face by a 

few milliseconds. The pressure at each point on the roof has a sharp 

rise, but the average roof pressure hes a longer rise time, corresponding 

to the travel time of the wave across the roof. 

The effects of these loadings on the building are of two types: 

(1) general compression of the building followed by a rarefaction, 

(2) racking of the building first in the direction of travel of the boom 

and then In the reverse direction. The overall compression of the build- 

ing causes an increase in the pressure inside the building. This inter- 

nal pressure is usually one-fourth to one-half the peak boom pressure and 

significantly adds to the structural stiffness in compression. 

Window deflections durli.g a sonic boom are a function of the exter- 

nal pressure, structure motion, and internal pressure built up through 

compression of the building. The external pressure shows evidence of re- 

flections from ground and buildings and passage around buildings and so 

may not correspond closely to the free-field boom pressure. To calculate 

the Internal pressures and building root >ns it will be necessary to know 

(l) motion of the walls and roof cnused DV a boom pressure, and (2) sctic: 

of the w*11s, celling, and roof caused by internal pressure.  If internal 

and external pressure are known, window motion can be calculated as the 

motion of e nonlinear, multiracial system under the action of known forces 

Such an analysis would be a major effort.  Instead, a one-degree-of~ 

freedom analysis was made and the contribution of nonlinearities and 

higher modes computed as perturbations of the  single mode solution. 
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FIG. 2 PRESSURES ON AND WITHIN A BUILDING 

To make the problem tractable the following assumptions were intro- 

duced : 

1. The outside boom is an ideal symmetric N-wave. This assumption 

eliminates the rise time and minor irregularities in the wave 

form»  If the period of the structure is much longer than the 

rise time or durations of irregularities, then this assumption 

is justified. 

2. The inside pressure has the form of a full sine wave with the 

same duration as the boom signature. This pressure history is 

a simplification of observed internal pressure histories. 



i.      The variation in arrival times around the building can be 

neglected. 

The several analyses required are 

• Linear analysis of first mode motion under an N-wave 

• Linear analysis of first mode motion under internal pressure 

• Linear analysis of first mode motion under an N-wave and 

internal pressure 

• Linear analysis of multimodal motion under an N-wave 

• Large deflection analysis of first mode motion under an N-wave 

• Calculation of the amplitude of internal pressure 

The results of these analyses are presented next. Following them, 

the results are collected to produce an analysis of a window motion and 

stress« 

B.  Window Deflection and Stress Based on Linear Analyses 

Figure 3 is an illustration of the probable history of central de- 

flection of a window (fundamental mode only) to an N-shaped pressure 

wave. The applied pressure is shown as the dotted line with an amplitude 

corresponding to the stress which would occur if the pressure were applied 

statically. The dynamic deflection curve shows oscillation at the funda- 

mental frequency of the plate. The plate is oscillating about the static 

deflection curve so that the dynamic deflection appears as a superposition 

of static deflection and free vibrations.  In this figure the maximum 

negative deflection is approximately equal to the maximum positive. The 

two maxima are 26$ and 40$ higher than the static stress corresponding 

to the maximum applied pressure. The ratio of maximum dynamic stress or 

deflection to the static value is referred to as the dynamic amplification 

factor. 

The dynamic amplification factor for the fundamental mode of a square 

plate (applicable to both stress and deflection) is shown in Fig. 4. The 

loading was a symmetric N-shaped pressure wave.  In this figure there are 

separate curves for the maximum positive and negative deflection during 

the boom and the magnitude of the free oscillation following the boom. 

These curves were derived from the analysis in Appendix A for linear 

9 
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amplification factors. The abscissa is U;T/2TT, a nondimensional relation 

between u>, the fundamental circular frequency of the window, and T, the 

duration of the N-wave. 

Higher modes also contribute to the deflection and stress in the 

window. Dynamic amplification factors for the deflection and stress 

undsr a symmetric N-shaped pressure wave for the first eleven modes are 

shown In Figs. 5 and 6. The first eleven modes were calculated but the 

main contributors were the first (1,1) and second symmetric (1,3) modes. 

For comparison the two figures include the positive and free vibration 

maxima for the fundamental mode. We note that, while the amplification 

factor was the same for stress and deflection in the fundamental mode, 

it differs for the multimodal case. The factor for deflection is modi- 

fied only very slightly by the contributions of higher modes:  the first 

peak is about 4$ higher and other curves are modified less. The ampli- 

fication factor for stress is increased 0.60 in some regions of the ab- 

scissa and the peaks of the curve are broadened.  In addition the second 

symmetric mode is sufficiently important to provide well-defined humps 

on some of the curves. On the average the stress increase during free 

vibration is 0.28 and for the positive maximum the increase is 0.26. 

C.  Deflection Under Internal Pressure Based on Linear Analyses 

The response of a one-degree-of-freedom system to a pressure in the 

form of a full sine wave is shown in Fig. 7. This is the expected form 

of internal pressure. Again the positive maximum, negative maximum, and 

free vibration maximum are shown as a function of fundamental frequency. 

The amplification factor is larger than 2.0 only near coincidence of the 

forcing frequency and the natural frequency. The analysis on which these 

curves are based is detailed in Appendix B. 

In Appendix B an analysis is also made of the response of a one- 

degree -of -freedom system to a combination of the N-wave and internal 

pressure.  Some results are shown in Figs. 8 and 9 for deflection (stress 

curves are identical). The main effect of increasing the internal pres- 

sure is to greatly decrease the amplification factors in the vicinity of 

(üT/2TT =1.0. 

12 
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D.  Nonlinear Deflections and Stresses Under Booms 

In response to normal wind pressure loadings, window deflection is 

a markedly nonlinear 1'unction of the pressure. This nonlinear behavior 

occurs because the plnte resists part of the load as a membrane after the 

deflection becomes large. According to the discussion of Freynik (1963) 

this nonlinearity causes the motion to differ considerably from that 

shown in Fig. 3.  Ins ead of the smooth sinusoidal vibrations, the motion 

shows abrupt changes tn direction. The natural frequencies of a window 

undergoing large deflections are a function of the deflection amplitude 

and are almost a continuous band of frequencies above the fundamental. 

With such a mixture of frequencies in the motion, the natural frequencies 

cannot be readily determined from the records. The nonlinearities have 

an important effect on 

• stresses and deflections, 

• natural frequency, 

• dynamic amplification factor. 

We will consider each of these effects and then provide some numerical 

values to guide in assessing the seriousness of the nonlinearity. 

The variation of stress and deflection with applied static pressure 

is shown in Fig. 10 based on the calculations in Appendices C and D.  In 

Appendix C the forms of the equations are derived theoretically. The 

coefficients of the equations are evaluated in Appendix D from experimen- 

tal data of other investigations.  Figure 10 shows the nondiraensional 

quantities w0/h (deflection, §), c»2/Eh3 (stress, S), and qa4/Eh4 (pres- 

sure, Q), where 

w0 s central deflection of the square plate 

a     s stress (bending, membrane, or both) 

q  = uniform pressure on the plate 

a  = side of plate 

h  = thickness of plate 

E  = elastic modulus of plate material 

The nonlinearities became important for a deflection greater than 0.5 

times the plate thickness. A 2 psf boom will cause defections up to 1.9 

times the thickness in some windows - that is, well into the nonlinear 

range. 

18 
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AS A  FUNCTION OF  STATIC  PRESSURE 
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In Fig. 11 it is apparent that the relation between deflection and 

central stress is not altered much by the nonlinearities. The fact that 

the linear and nonlinear curves do not coincide at the origin suggests 

that there may be some uncertainties about the experimental values from 

Appendix D on which the curves are br,sed. 

20 
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FIG. II NONLINEAR RELATION BETWEEN CENTRAL DEFLECTION AND STRESS 

Next we consider the large deflection of a window under boom pres- 

sures. Dynamic calculations of plates undergoing lerge deflections 

normally begin with von Karman's equations.  (See Timoshenko (1936) for 

a derivation of the equations.) However, the results from von Karman's 

equations did not agree well with experimental data on window deflections 

(see Appendix D). Therefore we took the pressure-deflection relation 

derived fro.ii the static experiments, restricting attention to motion in 

the fundamental mode only. 
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Nonlinear deflection of a window under an N-wave is shown in Figs. 

12, 13, and 14 (based on calculations in Appendix E). These three figures 

correspond to peak pressure amplitudes required to cause static deflec- 

tions of h, 2h, and 3h.  (? is the nondimensional static deflection 

w /h under the peak pressure.) The peaks of these figures and Fig, 4 are 

summarized in Fig. 15.  In the summary figure we see that large deflec- 

tions tend to reduce the period of the plate so that the maxima occur at 

smaller values of U>T/2TT than occur from small deflections. Also, the 

amplification factor for free vibration is reduced for large deflections 

but is unaffected for the positive maximum during forcing.  The change 

in the apparent natural frequency with deflection is summarized in Fig. 16 

An estimate of the multimodal nonlinear behavior is made in Appendix 

E for both stress and deflection. The peak deflections are modified very 

slightly by the participation of modes above the fundamental. Therefore, 

it is recommended that the nonlinear response in the fundamental mode be 

used to calculate deflections with no changes to account for higher modes. 

The estimate for peak stress is more complicated, and the accuracy 

of the estimate may be considerably 3ess than that for deflection. The 

estimation procedure to be outlined appears logical but has not been 

verified in auy way. The procedure includes two elements; 

• Conversion of the nonlinear deflection amplification factor 

to stress amplification factor 

• Addition ol an increment to correspond with the contribution 

of higher modes. 

To convert from deflection to stress, Eq. D.8 can be used to relate 

the stress in the first mode, 8U   to the total central deflection, §, 

8.  =  4 QP M -fc fl 1«7iM 

But the deflection £  is F_§ where 
I * 

F is the amplification factor for deflection and 

? is the static deflection. ss 
Therefore 

S,  = 4.9 F§§8 (1 + 0.167 F£B) 

The next step is to add a f otor corresponding to the contribution of 

21 
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TO A BOOM LOADING WITH AMPLITUDE SUCH THAT t   - 1.0 
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FIG. 13   NONLINEAR   FIRST  MODE  DEFLECTION  OF. A  SQUARE  PLATE 
TO A BOOM LOADING WITH AMPLITUDE SUCH THAT £t - 2.0 

23 



2.0 

- C-3.0 
1 IT—1 r-~T— 

 —FREE VIBRATION 
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FIG. 14   NONLINEAR  FIRST MODE  DEFLECTION OF  A SQUARE  PLATE 
TO A BOOM LOADING WITH AMPLITUDE SUCH THAT £t - 3.0 
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FIG. 15   SUMMARY  OF  NONLINEAR  FIRST  MODE  DEFLECTION 
OF  A  SQUARE  PLATE   TO  A  BOOM  LOADING 
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0.5 
NATURAL PERIOD 

1.0 

NATURAL   PERIOD  FOR ZERO DEFLECTION 
TA-606S-I2 

FIG. 16 VARIATION OF APPARENT NATURAL FREQUENCY 
WITH CENTRAL DEFLECTION 

the higher modes. According to the analysis of Appendix E, the stress 

associated with these modes is primarily bending (not membrane) stress 

and hence equal to that obtained for the linear case. Therefore add 0.28 

time«* the total linear static stress if the peak occurs during free vi- 

bration, or 0.26 if the peak occurs during forcing. That is, for free 

vibration the dynamic stress is 

S = 4.9 TA     (1  + C.167 F„£ ) + 0.28 (4.4) g 

The stress amplification factor, F , is found by dividing S by S where 
G S 

S  = 4.4 §  (1 + 0.186 5 ) 
0 *S '3 
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As an example consider a square window and a boom with the follow- 

ing characteristics 

Window area = 45 square feet 

Thickness   = 1/4 Inch 

Natural frequency = 7.4 Hz 

Boom duration = 0.1 seconds 

Peak pressure = 8.85 psf 

Nondimensional pressure = 66 

According to Fig. 10, the static deflection under the peak pressure is 

2h.  F  is 1.80 according to Fig. 15, using an abscissa of 0.1 (7.4) = 

0.74. Then for moment we compute 

4.9 (1.80) (1 +  0.167 x 2.0 x 1.80) + 0.28 (4.4) 
a ~ 4.4 (1 + 0.186 x 2.0) 

= 2.54 (nondimensional) 

a value which appears quite reasonable. 

Now let us take three examples of windows and determine the deflec- 

tions, stresses, and frequencies in response to a 2 psf boom, disregard- 

ing internal pressure. The maximum and minimum slenderness ratios (340 

and 220) and an intermediate value will be used for the comparison. The 

calculated values are given in Table 3.  Included in the table are values 

from the linear analysis of the same problem. The window with the largest 

a/h value gives the most markedly nonlinear behavior. For this window 

the large deflection theory gives a deflection just 84$ of that from the 

linear theory, and stresses 75$ of those from the linear theory. The 

window*? with smaller 2 'h rut IGE "*ivs deflections cbrsut csusl tc the 

linear values although the stresses are considerably lower. 
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TABLE 3 

DEFLECTION AND STRESS OF SQUARE WINDOWS UNDER A 2 PSF BOOM 

a/h Static Loading Dynamic Loading 
Linearized Analysis, 

Dynamic Loading 
w0/h 

Deflection 
a 

Stress 
(psi) 

w0/h   j 
Deflection 

a 
Stress 
(psi) 

w0/h 
Deflection 

a 
Stress 
(psi) 

!   0.15 

0.39 

1   0.78 

160 

240 

350 

0.30 

0.75 

1.43 

370 

560 

810 

0.30 

0.78 

1.70 

440 

730 

1080 

220 

280 

340 

NOTE:    The boom duration and fundamental frequency of the window 
were presumed to be such that UJT/2TT = 1.0, 

i 

E. 

by 

Determination of the Amplitude of Internal Pressure 

The pressure in a building which is struck by a boom may be caused 

1. flow of the pressure wave through openings in the building 

(open doors, windows, ventilation ports), 

2. cverall compression of the building, 

3. transmission through flexible areas such as windows. 

The third is essentially a different way of stating the second with the 

added presumption that the only elements which will deflect appreciably 

are windows. The third cause was assumed by Blume (1965) to be the most 

important.  In this section a calculation is presented determining the 

pressure rise as a function of overall building compression. Th« 

calculation showt» that building compression may be the prime cause of 

internal pressure. 

For the calculation we will assume that the history of the internal 

pressure is sinusoidal with period equal to the boom duration.  Internal 

pressure is calculated from the equilibrium condition between the boom 

pressure, wall deflection and internal pressure. The necessary equetions 

are derived using the variables illustrated In Fig. 17. The maximum 

deflection of the roof Is 

28 



WD      "      F»   WfiP   ^1   "   ('«.   "   F«ro)   WcD   ^21 (1) 

where F      is a dynamic amplification factor for the roof under boom 
BR loading. 

F is a dynamic amplification factor for the roof under 

boom and internal pressure (as shown in Figs, 6 and 9). 

w is average static deflection under unit pressure. 

41'  Q21      are outdoor boom and attic peak pressures. 

FIG. 17   PRESSURES CONSIDERED  IN  CALCULATING 
THE  INTERNAL  PRESSURE  OF  A  BUILDING 
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Comparable equations can be written for the wall and window deflections 

Similarly, the ceiling deflection is 

wc = Fic wsc (q*1 - q>*] (2 

where 

F   is tue dynamic amplification factor for the ceiling under 
lv 

internal pressure 
wo« *s tne average static ceiling deflection under unit pressure 
DC 

q22    Is the pressure in the first floor rooms. 

The internal pressure is caused by deflection of the structural surfaces 

so that 

q»   •   W
C

G
C 

+
 

W
W°W 

+
 VB (3) 

q»    *    WRGR-WC°RC 

where 

W 
=    window deflection 

-    wall deflection 

**nt  G >  G ,  G  ,  and G        are factors relating the average deflection 
C   W   B   F       RC 

to the change in pressure. 

The main contribution to internal pressure is from large panel elements 

such as the roof,  large doors, or windows. 

To validate the method, a calculation was made of the peak internal 

pressure in a simple rectangular one-story structure designated PF-6 in 

the White Sands sonic boom test report of John A. Blume and Associates 

(1965). 

The experimental results obtained during the sonic boom tests indi- 

cate a nonlinear relation between internal and external pressure.  For 

low pressures the ratio is about 40$ for booms from an F-104.  At 5 psf 

the ratio is 30$.  For our calculation the 2 x 4's in the walls and roof 
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were assumed to provide all the stiffness to those elements and to be 

fixed at both ends. The positive maximum amplification factor was used 

from Figs. 4, 7-9.  The boom duration was assumed to be 0.10 seconds, a 

nominal value for the F-104. Calculated frequencies of the structural 

elements were 

Windows       18 Hz 

Walls 25 Hz 

Roof, Celling  8 Hz 

Equations 1 through 4 were solved for a 1 psf boom to give 

q21  = 0.64 psf (peak attic pressure) 

q22 = 0.36 psf (peak pressure in first floor rooms) 

The value of 0.36 for q22 should be compared to the internal pressure of 

30 to 40$ measured by Blume and Associates, 

The correspondence between the calculated and experimental values is 

very good considering the uncertain basis for some of the assumptions. 

The present calculations alfo show the relative importance of the contri- 

bution of each element to the pressure rise in the structure. For PF-6, 

the pressure caused by motion of the roof and ceiling was 82$ of the in- 

ternal pressure, q22.  The walls contributed 8$, windows 10$.  While the 

calculations are not verified sufficiently to use for predictions, the 

results led us to believe that compression is the main cause of the rise 

in internal pressure. 

The preceding procedure is dependent on the validity of certain as- 

sumptions concerning +*e *»nd fixity of wall and roof members, and on win- 

dows and doors being closed.  Instead of conducting this procedure, which 

is unverified, it is reasonable to depend on an estimate of the internal 

pressure based on the experimental results of Blume (1965).  For a flexi- 

ble structure the internal pressure might be estimated at 50$ of the boom 

pressure.  If the roof or ceiling or upper floor is a stiff element and 

the walls are not abnormally flexible, an educated guess indicates that 

the internal pressure is 25$ or less of the boom pressure.  Following 

the reduction of the Edwards Air Force Base test data it is expected that 

a more reliable basis for these pressure estimates will be available. 
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F.  Summary of Window Behavior Under Boom Loading 

Determination of the response of windows to booms requires the com- 

putation of a host of factors. Now that each of the factors has been 

introduced, a summary of the calculation is presented: 

1. Estimate window deflection using some guess at internal pres- 

sure; use Figs. 4, 8, and 9.  This estimate is required for 

Step 2. 

2. Compute the internal pressure acting on the inside of the win- 

dow as outlined in Section E. 

3. Determine the amplification factor for the window as a one- 

degree -of -freedon system to boom pressure and internal pressure; 

use Figs. 4, 8, and 9. 

4. Modify the computed factor for nonlinear effects:  Find the 

dynamic amplification factors for appropriate static deflection 

and for zero deflection; multiply the amplification factor from 

Step 3 by the ratio of these factors to obtain Fff . 

5. Modify the values for the multimodal effect: For deflection, 

let F, 
S 

= F- .  For moment or stress, compute F , the dynamic 

amplification factor fi*om the relation 

1.115 F. (1 + 0.167 F.c ) + 0.28 
 I L*  

1 + 0.186 % 

The values of stress and deflection can then be found from the equations 

and 

S = F S cr s 4.4 F  (1 + 0.186 t   )  F 
^s ' 3s  a 

It is expected that the dominant displacement response of square 

windows to a 2 psf far-field sonic boom will be resonance in the funda- 

mental frequency of the window.  For longer rectangular windows there 

will be oscillation in the first and second symmetric modes. The near- 
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field boom exhibits oscillations which may excite oth~r window frequencies 

Nonlinear effects are expected for windows with large slenderness 

ratios (length to thickness over 300) when subjected to 2 psf booms. 

Instead of a resonance in the fundamental mode at the fundamental fre- 

quency, the resonance will occur at a range of frequencies near the fun- 

damental.  Freynik (1963) has shown that the Fourier spectrum of response 

has a continuous band of frequencies with the frequencies from linear 

theory dominant. The linear frequencies become less dominant as the 

deflections increase. The magnitude of the peak deflection and stress 

will be reduced by the nonlinearities. The dynamic amplification factor 

for deflection and stress will be 1.4 to 2.7. 

Maximum stress and maximum deflection are not closely related, even 

in the static case, Maximum deflection under a uniform static pressure 

is essentially a function of the first mode response whereas maximum 

stress receives a contribution of about 10$ from the higher modes.  In 

the case of dynamic and particularly nonlinear dynamic response, there 

is even less correlation between the stress and deflection.  Hence, if 

stress is desired from experimental data, stress should be determined 

from strain gage measurements, and if deflection is desired, deflection 

i.«iould be measured.  One should not depend on calculating one quantity 

from a measurement of the other at a given point. 

.id 
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SECTION IV 

STATISTICAL PREDICTION OF FAILURE 

The most important information which should be obtained from a study 

of window response to sonic booms is an answer to the question:  What is 

the probability of failure of win .-s under sonic boon? pressures? To 

answer this question we need stavU", Leal data of three types: 

• Variability of measured ...ximum pressures for a planned pres- 

sure of the sonic boom. These variations ore dependent on 

weather conditions, position, velocity, and acceleration of 

aircraft, and terrain. With our present state of knowledge 

about booms, these variations must be handled statistically 

rather than deterministically. 

• Distribution of window sizes in buildings. 

• Distribution of window strengths in normal kinds of casings. 

We have made two computations, assuming first that window glass 

strengths are distributed normally, and second that they are distributed 

lognormally.  (Available data do not distinguish between these distribu- 

tions.) We take the coefficient of variation of the strength as 25$ as 

recommended by McKinley (1964) of Pittsburgh Plate Glass. The mean boom 

strength is taken as 2 psf with a coefficient of variation of 25$. The 

25$ is characteristic of fairly calm days. The peak stresses used will 

be those from Table 3, for a/h = 340 (most critical case) and for a glass 

strength of 6600 psi. 

The probability of failure is treated from the viewpoint of multiple- 

valued random phenomena as described by Parzen (1960) (Chap. 7, Sec. 3): 
08 x. 
r r 

P    =    |      cpi{»ij     |      cp2(*2) dx2 dXj (5) 

where cp's are mutually independent probability density functions.    For a 

normal distribution,  cp is given by 

1 
cp(x)    =   73ST        exp [-1/2  (2^)2] 

PRECEDING PAGE BIANX V? 
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and  for  the  lognormal,   cp is   (see Aitchison and Brown  (1937)) 

1 
cp(x)    =   /ST        exp [-1/2 (Iog

o
x"m)2] 

While an exact analytical solution of Eq. 5 is not possible, the Integra 

tion can be easily performed numerically.  These computations were made 

for the most critical case of Table 3, that Is, for a/h - 340. The 

results are 

Distribution 

Norma1 

Lognorma1 

Probability 

.0002 

io-9 

Evidently then the failure probability is critically dependent on the 

distribution assumed.  It is often said that the normal distribution is 

impossible because it predicts a finite possibility of negative values 

of strength and boom pressure. However, if we truncate the normal dis- 

tribution at zero for the above calculation, we make no noticeable change 

in the calculated probability. Hence there appears to be neither logical 

nor experimental bases for determining the correct distribution. 

From claims data it appears that the probability of damage for win- 

dowd per 2 psf boom is of the order of 10"8.  This indicates that the 

correct distribution for window strengths may be intermediate between the 

normal and logncrmal. Because of the very low probability value of 10 -6 

it is not to be expected that laboratory tests can provide the distribu- 

tion with sufficient accuracy for damage calculations. 
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SECTION V 

SUMMARY 

The results of this report apply only to windows which may be con- 

sidered simply supported. An unknown portion of real windows are loose 

or have stress raisers in their mountings. Most windows without such 

defects will fail under boom pressures of 100 psf or less while at least 

a few will fail at 10 or 20 psf. Defective windows may fail at even low- 

er levels.  At static pressures of 1 to 10 psf the response of simply 

supported windows becomes nonlinear. The nonlinearlty radically affects 

the relations among deflection, stress, and pressure. 

The dominant motion of a window under a 2 psf boom is oscillation in 

the fundamental frequency. For windows with a length to thickness ratio 

over 300, nonlinear effects are expected to increase the response in the 

higher modes. Also the motion in the fundamental mode will occur at a 

range of frequencies near the fundamental frequency. 

A procedure was developed for predicting the deflection and stress 

of windows under low-pressure booms. The present analysis is adequate 

although approximate. The procedure is based on a one-degree-of-freedom 

analysis plus estimates of the multimodal and nonlinear effects and of 

the interaction with the building motion. 

The calculation procedure provides predictions of 

• Peak internal pressure caused by incidence of a boom on a 

building 

• Response of a one-degree-of-freedom system to a combined boom 

and internal pressure loading 

• Contribution of higher modes to the stress and deflection of 

windows 

• Modification of window response caused by large-deflection 

(nonlinear) effects. 
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The possibility of window failure caused by 2 psf booms Is consi- 

dered from a statistical standpoint.  But no reasonable estimate of the 

statistics of failure can be made because statistical distribution of the 

strength of glass is not known precisely. 

In experimental studies of window motion it is necessary to measure 

(a) central deflection of the window, (b) strains at several points on 

both sides of the pane, (c) pressure on both sides of the window, 

(d) edge fixity of the window.  In dynamic studies the history of each 

of the measurements a, b, and c must be taken. Auxiliary measurements 

must be made of Young's modulus and Polsson's ratio and the exact dimen- 

sions of the glass pane. 

A basis for reduction of experimental data on window response is 

provided.  Stress, deflection, and pressure should be nondimensionalized 

and graphed against each other to show the trends. Dynamic results will 

require a dynamic analysis similar to those herein to provide an adequate 

evaluation of the data. 

There is need fox empirical relations among stress, deflect Lor, and 

pressure for windows in the usual mountings. Such relations should pro- 

vide a basis for multimodal response calculations. The next step is a 

dynamic multimodal calculation. With static relations and dynamic cal- 

culations, an adequate base Is laid for reducing data from sonic boom 

tests on windows. 
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SECTION VI 

FURTHER STUDY 

To more clearly define the response of windows to sonic booms, four 

further studies may be considered. The first three should be undertaken 

in the order lasted. 

1. An experimental determination of the static and dynamic load- 

deflection relations for windows. Measurements must be suffi- 

ciently complete to provide information on the behavior in 

several modes. 

2. A calculation of the dynamic multimodal response of windows 

undergoing large deflections. 

3. A detailed analysis of the response of windows in test houses 

at White Sands or Edwards Air Force Base. The required instru- 

mentation consists of an accelerometer, strain gages or dis- 

placement gages on the window, and pressure gages on the inside 

and outside of the window. In addition, a motion gage on the 

window frame would be useful to show the amount of support 

movement. 

4. A study of the magnitude or internal pressures in buildings 

subjected co booms. The internal pressure should be measured 

and calculated from the motion of structural elements. A by- 

product of such a study would be an accurate method to calcu- 

late the frequencies and deflections of building elements in 

residential construction. 

While each of the above studies has scientific and engineering merit, none 

appears to be justified by the needs of the sonic boom program. 
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zo   = 

m-n 

mti    ntl    «"n(»a+na)' 
odd only 

I   E 
00 00 

m= 1    n=1 
odd only 

But for m = n 

Rt(a,a)    = 4m 

and for m ij n 

R!(m,n)    *    Ri(n,m) 

Now define R(m,m)     = 
4m' 

and 

m-n 

R(m,n)     = 2(-D 
mnim *££Tp    f or m ^ n 

Then the nondiir.c-asional static deflection is 

00 00 

20 =  E   E  R(m>p) 
m= 1    n=m 
odd only 

The nondlmensional static moment is 

00 CO 

MO 
m=l    n=l 
odd only 

ra-n        m2+un2 

mn(m2+n2)2 

00 OS 

m-1    n=1 
odd only 

But for n = n 

Sl(m,m)    =    4^ 

and for    m \ n 

S;(m,n) + St(n,m)    = mn(ma+n2)     * 

m-n 
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Therefore, let 

S(ra,m)  as 4m' 

and 

S(a,n) = 

m-n 
(-if*"  , —*7—i—5-r for m = n 

mn(mz+nz) 

Then 

00      00 

MO *   £  £  S(m,n) 
m=1 n=m 
odd only 

"'he dynamic deflection is obtained using the mode superposition 

approach which can be found in many texts (see, for example Norri3, et al 

(1959)).  In this method, the deflection is represented as a series of 

products of three elements: 

w(t)  = T   Y   F  (t) A  cp  (x,y) v '    La  L»     mn   Tmn Tmn v ' 
m n 

(A.3) 

where 

F (t)   is the dynamic amplification factor 
mn 

tfi       is a participation factor for each mode mn 

<P, mn 
is the mode shape. 

For  the square  plate 

v(x>y> 

'mn 

a    sin  (mnx/a) sin  (nny/a) 

a    a 

QoK 
•Jo  co 

v(x,y) dxdy 

a     a 

au2       \ 
mn 

«-o  ^o 
cpmn

2(x,y)dxdy 

(A.4) 

(A.5) 
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mn 
TT4Dg (m2+n2)2 (A.6) 

where 

g   is the acceleration of gravity 

V   is the weight per unit area 

ran is the natural circular frequency of the mn mode 

q0  is the maximum of the applied pressure 

In the subsequent analyses, we will develop two solutions:  one 

applicable during forcing and the other applicable in the free vibration 

following forcing. Let the loading be given by the expression q0f(t). 

Then the dynamic amplification factor is 

t 

FmnW      =  ^n    *(*'' Sln [«Lit*-*')] dt ' (A'7) mn       mn . mn 

For an N-wave the loading is 

q0(l-2t/T)   for 0 S t s T 

where T is the duration of the N-wave. Then the solution during the time 

of forcing is given by 

F  (t) mnv ' 
l-cos(u> t) - SI + -£— gin (m t)    (0 £ t £ T)  (A.8) 

mn    t   (i) T     mn mn 

mn 
_ 16qna

4 

TT*Dmn(m2+n2)2 
for m and n odd (A.9) 

w(t) = ^§g^ t      t   sin (mTTX/a) sin (ntry/a) F^t 
ra=l n=l 
odd only 

(A.IO; 

<D      CO 

^ t    £ 4^yr •*<«*/•> •*»<«*/•> r^t) 
m=l  n=l (A#n) 

for  (0 * t * T) 
odd only 
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These values of w(t) and M are valid only during the loading, that is, 

up to t = T, 

Using the quantities R and S, and introducing nondimensionalized 

central deflection Z and moment M, Eqs. A.10 and A.11 take the following 

form. 

00      00 
2t    2 

Z =  Z   Z R(m>n) Cl-oo»(ui t) - Y  + —^ sin(o) t)]    (A.12) 
m=l n=ra 
odd only 
m=l n=ra ~   mn 

00 

T „/   x r     i        .>   2t .  2 M =  Z  Z S(m,n) [--co»(u) t) - — +  j  sin((« t)]   (A.13) 
m=l n=m 
odd only 
m= 1 n=m mn 

Figure 3 shows the history of the stress or deflection in the funda- 

mental mode during forcing and during free vibration. Both for deflec- 

tion and moment in the plate, the major contribution is given by the 

first mode (m » n = l).  Using this fact we can approximately locate the 

maxima of the deflection and moment by finding the maxima of the first 

mode.  The maxima occur at a time when the derivative of the temporal 

term is zero, i.e. when 

~  sin (jut  =  1 - cos (tat) (A. 14) 

This relation is satisfied in two ways. The positive maxima (defining 

inward deflection) are given by 

u)tlt    =  2 arc tan (U),IT/2) + 2 in        (A.15) ii max X1 ' 

where  i  is zero or a positive integer.  The case i   = 0 is of interest 

i here because it defines the largest of the positive maxima. The negative 

maxima (defining outward deflection) occur for a)ltt    = 2iTT where i x ll  max 
is a positive integer.  To obtain the largest negative value,  i  is 

chosen so that 

2 in < (DT < 2(1+1) n (A.16) 
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The maximum values obtained from Eqs. A.12 and A.13 represent the 

pv-«k of the first inward motion of the window. To reduce these values to 

the dynamic amplification factors we divide them by the corresponding 

static values from Eqs. Al. and A.2.  That is 

F? • 55 • AorC 

and 

F  = I = B or E 
m    MO 

where F and F stand for dynamic amplification factors for deflection 

and moment. A, B, C, E, are names for these factors in the computer 

program developed to evaluate the equations. A and B are for positive 

maxima, C and E for negative maxima. 

In addition to finding the amplification factor for the multimodal 

case, it is of interest to find the factor for the first mode. This 

calculation is easily made because the Eqs. A.Is and A. 16 exactly locate 

the maxima. The amplification factors for deflection and moment in the 

first mode only are designated Al and Cl. Curves showing the amplifica- 

tion factors for deflection and moment are shown in Figs. 4, 5, and 6. 

Following the application of the load the plate undergoes free vi- 

brations which are also associated with deflections larger than the 

static ones. The deflections during a period of free vibrations have 

the form 

w = w0 cos [<i>(t-t0>] + -Ä sin [u)(t-t0)] 

...V.-».—  -•'     _ —J  .?.    ___   X   _ J X.  .1 _ "f   J_*l__iJ ."  .._! t  X...      -4.   iU.   «.<|_c  A. niiSXKs    riQ   aim    •» Q    axe    uuvxai   ucixocbiVll    anu    vei.uv-iij    en.     c»ie     lime     b0* 

Therefore, the first step in calculating t^ese free motions is to deter- 

mine the displacement and velocity at the termination of forcing and 

beginning of free vibration, that is, at t = T. The displacement and 

velocity at the center of the pl3te are 
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00 GO 

W(T)     =      L       Z    *     (T) (A.17) 
m=l    n=l 
odd only 

and 

where 

CO 00 

w(T)     =      £       £    w     (T) (A.18) 
,     mn 

m=l    n=l 

/   . 16qca4 sln(mTTx/a)sin(nrry/a)   /   . 2 „>/»,«> 
w     (T)     =     -g^~ H   a'—g\a'   —"—L  (_1-COS UJ    T + —-r sin  tu    T)   (A. 19) mnx rr8Dmn (mz+n2)* mn        UJ    T mn      v 

' mn 

.     ,   . 18g0a< ^mnsi"(^/a)sin(nTTy/a) 2 2 w,   ,,r,. 

mn ran 

Then for t .> T the deflection is 

CO CO *    (T) 
w(t)    =5"       £   w     (T)  cos u)    (t-T) + —  sin UL  (t-T) (A.21) s *-', ,    mnx mnN UJ ranN x 

m= l    n= l ran 
odd only 

and the nondiraensional deflection is 

CO CO / 

Z    =     T      y   R(ra,n) \[(-l-cos(uj    T) + ——- sin(oi    T)] cos [gg    (t-T)] 
*-»       t-     v  '   '   |wx v mn  '      UJ    T        v mn 'J L mnv 

m=1    n=m 
odd only 
m=l    n=m I mn 

2 2 
+  [sin(uj    T)  +   COS(UJ    T)] sin  [UJ    (t-T)] L  v mn '  (JUT  ID T   

v mn      L mir 
mn    mn 

The equations for moment after the loading can be determined by the 

same procedure. The maxima in the first mode are given by 

tan OnCt-T)] = ~^~ (A.22) 

which reduces to 

»nt « Sul  + i(n) (A.23) 

where i is zero or a positive integer, i must be large enough so that 

t > T8 
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The dynamic amplification factor for the first mode is designated 

A2 and is obtained using the time given by Eq. A.23.  The multimodal 

amplification factors are designated AFR and MOMFR, where 

AFR = JL       and      MOMFR = jjL 

Z and M are the maximum values of nondimensional deflection and moment 

which occur during free vibration. 

Flow charts for the program are shown in Figs. A.l - A.3. Most of 

the variables have been defined in the previous discussion. Comment 

cards in the program listing further help to clarify the computation 

system used. The program is written in Fortran IV and has been used 

with both a Burroughs B5500 and a CDC3200. The input parameters required 

for the program are explained in the program. A sample set of data cards 

are 

(1) 2 

(2) 40 21 0.02 0.02 0.005 

(3) 20 21 1.00 0.05 0.005 

The first card indicates that there will be two groups of data. The 

second requires a calculation for 40 values of the abscissa, U)T/2TT, 

starting with 0.02 and proceeding to 0.80 in increments of 0.02. The 

third card produces a calculation for 20 values of abscissa, from 1.00 

to 1.95 in steps of 0.05. 

The program prints out the input parameters for reference and lists 

the results in 15 columns. The first column is the abscissa, UJT/2TT. 

The next group of six columns are results for the fundamental mode only 

and consist of Al, Cl, A2, Al, Cl, and A2. The next six columns are 

resy.lt« *•>•»* all modes up to 11. 11. The printout is in the order A, C, 

AFR, B, E, MOMFR. The final two columns, headed x(z) and X(M) indicate 

the value of tut at which the negative maximum occurs for deflection and 

moment, respectively. 

Until the abscissa exceeds 0,50, the maximum negative responso 

during forcing is zero. The program does not correctly provide for this 
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•    i 

INITIALISE ZO, 10 

• > I 

X 
•JCOMPUTE fUll,l),  S(M.M),  ZOJWJ 

i «a.i    "1 
 X ' 

COMPUTE FN. ten), KM), K. «7{ 

£    WHITE ZO. 10    ^ 

f   »c»o Jcrouf   j) 

SET IUG - 

RE/10 GROUP SPECIFICATIONS 

COMPUTE 
X 

j        SET III  • I        ) 

COMPUTE 1ISCI Su, 0T1U 

X 
EH 

* - * 

^COMPUTE 1(M),MIW(M),ilC0W(M)j 

COMPUTE III.  POSITIVE MOMENT 

I 
COMPUTE m.  IE8ITIIE DETL. 

t 
COMPUTE SIX. UW\U MOMENT 

X 
COMPUTE KM. FP.FE DEFLECTION 

j        COMPUTE Nil. FÜEE MOMENT 

CPU INT OUTPUT N 
*l, Cl, 12, I,  C.  IF»,  I, E, MOMFN. W. WtJ 

FIG. A.l    FLOW CHART  FOR MULTIPLATE  PROGRAM  TO  COMPUTE 
MULTIMODAL  DYNAMIC  AMPLIFICATION  FACTORS 

49 



HieB«gw^*gg«*ffr8waggwgg^?*''^ 

I HI in « mtm Hi- m weim| 

r ttmn u. ti   | 

CIU «Sift 1 
1 

|  I(T MUIC  • ill («MIT • I(il))l 

|       RHII-Z(II) 

POSITIVE    MAXIMUM 

—»j mnn c | 

NEGATIVE    MAXIMUM 

FREE    VIBRATION   MAXIMUM 

FIG. A.2    FLOW CHARTS FOR PORTIONS OF ThE MAIN MULTIPLATE PROGRAM 
FOR COMPUTATION OF DEFLECTIONS (portion« for calculating moment* are similar) 
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( mi-' 

SUBROUTINE    FOHCZM SUBROUTINE    FREEZM 

|        Hi II  • I | 

D•3 
SUBROUTINE    ZMAX 

T     um mit m n 

SUBROUTINE   MOOIFY 

FIG. A.3   SUBROUTINES USED  IN  MULTIPLATE  PROGRAM 
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*«scH8KW!SJBR5rrwrr' 

eventuality sc that amall positive or negative numbers are listed for C 

and E with 0 < XT/2TT < 0.50. Such values should be disregarded. 

The compile? time was about 80 seconds on either the CDC3200 or the 

B5500. The execution time per abscissa value was 9 to 10 seconds on the 

3200 and 12 to 13 on the 5500. 

The results of the program are depicted in Figs. 4, 5, and 6. The 

first is the maximum deflection or moment in the first mode. This figure 

shows the fundamental pattern of the response which is only slightly modi- 

fied by the participation of higher modes. The first maximum to occur 

during forcing is celled the positive maximum, corresponding to the posi- 

tive pressure of the N-wave. The curve of positive maximum is monotoni- 

cally increasing with abscissa values, approaching 20 at infinity. The 

negative maxima occur at the largest negative oscillation during the 

time of forcing. Negative maxima may occur under two conditions: at the 

peak of an oscillation where dw/dt = 0 and at the end of forcing when 

t = T. The decreasing portions of the curve pertain to the first condi- 

tion, increasing portions to the second. The free maxima show the lar- 

gest values and most clearly show the dependence of the maxima on the 

natural frequencies. For abscissa values of 1.43, 2.46, and 3.47, thsre 

la no motion after the time of forcing. 

The multimodal Reflection is very similar to the first mode deflec- 

tion. The positive maxima show a 2$ or 3<f>  increase over the response in 

the fundamental mode. Negative maxima are very similar to the first mode 

response throughout and coincide exactly during decreasing portions. The 

curves for free vibration maxima shows slightly broader humps and aboui. 

a 4$ increase for the first hump, less for later humps. The min:mum 

points on the free vibration curve are not zero, showing that there is 

always some residual motion following forcing. 

In Fig. 6 it is evident that the moment maxima receive a significant 

contribution from the higher nodes. The curve of positive maximum is 

augmented up to 20$.  In spite of this fairly large contribution, the 

response curve is smooth except for a slight undulation near the origin. 

The average increase in amplification factor is 0.26. The curve of nega- 

tive maximum is ?bout 5$ higher than those from the first mode. The 
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curve is buapy, showing the participation of  higher isodes, particularly 

th* second symmetric (1,3), The free vibration maxima are modified most 

significantly by the higher modes. Thb contribution of the 1,3 mode is 

clearly evidenced by the triple humps at each main hump of the curve. 

The increase over the first rcode curve varies from 0 tb 0.56 with an 

j | average value of 0.28. 

* ! 
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PROGRAM  MULTIPLATE 

C PROSRAM COMPUTES CENTRAL STRESS AND DEFLECTION OF A S0UA3T PLATE UN1CR ACTION 
C OF AN N-WAVE.  FIRST ELEVEN MODES (LINEAR THEORY» ARE USED. 

COMMON W»Dl»X0»Jl»K»QTAU»ASlNw»ACOSW 
DIMENSION W(6»6>»ZU0>"R(6»6>»S<6»6>»MOMU0)»ASlNW(6»6)»ACOSW(6»6> 
REAL MO«MOM»    MOMFR»INCREM 

960 FORMAT(//8H GROUP  »I2»6X»32HABSCISSA s OMEGA TAU/2PI  FROM  » 
1   F6.3rUH TO »c6.3»10X»2HK=»I3»6X»«»HEPS=»F6.3//# FORM 960 

961 FORMAT   (liX»29HP   IRST       MODE       ONL  V»19X»23HE L  E  V  E  N 
IM 0 D E  S) FORM  961 

962 FORMAT   (9H AB5CISSA»2X»2HZ*'6X»2HZ~»HX»6HZ  FREE»<»,<»2HM+,>6X»2HM-» 
1 <»X»6HM FREE»«»X»2HZ*»6X»2HZ-»*»X»6HZ FREE><»X»2HM+»6X»2HM-»<»X» FORM  962 
2 6HM FREc'<tX»<tHX(Z)f3Xt<tHX(MJ> FORM  962 

963 FORMAT   (1X»F6.3»12F8.«»»2X»2F7.3> 
980  FORMAT(IX» 13HSTATIC DErL =»F6.4»9X»15HSTATIC MOMENT = »F5.«»> 
986 FORMAT (I3»I3»F6.3»F6.3»F6.3) 
987 FORMAT (13? 
C 3SG1N LOOP TO CALCULATE ZO AND MO» STATIC DEFL AND MOMENT 

Z0=0 
M0=0 
DO 120 M=l»6 
FM=2»M*1 
R(M»M)=0.25/FM**6 
S(M»M)=0«25/FM**<t 
ZOSR(M»M)+Z0 
MO=5(M»M)*M0 
MM3M+1 
DO 115 N=MM»6 
FN=2»N-1 
R(M»N) = 12.Q/(FM*FN*(FM**2«-FN«*2>»*2) )*(-!.0)** (M-N) 
S(M»N>s(l.Q/(FM*FN*tFM«*2«-FN**2>   >)*(-1.0>** (M-N) 
Z0=R(M»N)+Z0 
MO=S(MrN)*M0 

115  CONTINUE 
120  CONTINUE 

WHITE (6»980)ZQrH0 WRITE 
C CALCULATIONS ARE MADE FOR GROUPS OF VALUES OF ABSCISSA» OMEGA TAU/2PI 
C ON FIRST DATA CARD ENTER VALUE FOR THE NUMBER OF DATA GROUPS»JGROUP. 
C ON SECONO AND SUCCEEDING DATA CARDS ENTER JENO» K» FIRST» INCREM» 
C AND EPS»    JEND IS THE NUMBER OF INCREMENTS OF SIZE INCPEM IN EACH 
C GROUP.   K IS THE TOTAL NUMBER OF STEPS TAKEN ON BOTH SIDES OF THc 
C FIRST GUESS»XO.  K MUST BE ODD.    FIRST IS THE FIRST VALUE OF 
C ABSCISSA IN EACH GROUP.     INCREM OEFINES THE INCREMENTAL CHANGE 
C IN ABSCISSA SITHIN EACH GROUP.    EPS IS THE ACCURACY REQUIREMENT 
C USED IN DECIDING WHETHER TO ACCEPT THE CURRENT MAX OR TO RECYCLE 

READ (5»987) JGROUP 
00 691 JUGsi»JGROUP 
READ (5.986) JEND»K.F: ,3T»INCREM»EPS 
FK*K 
D=1.6/(FK-1.0) 
DO 690 II1=1»JENO 
FIIISIII 
*BSCIS=FIRST*INCREM*(FIII-1.0> 
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0TAU=ABSCI5*6.2832 
00 ISO M=l»6 
00 170 N=M,6 
FM=2*M-1 
FN=2*N-1 
V(MrN)=OTAU*(FM**2*FN**2)/2.0 
ASINW(M»N)=SIN(W(M#»)) 
ACOSW(M»N)=COS(W(M,N)) 

170   CONTINUE 
180   C0NT7NUE 
C BEGIN CALC FOR POSITIVE OAF FOR OEFL — A  AND Al 

01=0 
X0=2.0*A'i« KOTAU/2.0) 
Al=1.0-CO.{XQ)-2.0*X0/OTAU*2.0«SIN(Xn)/OTAU 

C CALC 9 VALUES IV Z 
PENULTSO 

250  CALL FORCri (Z»R) CALL SUB 
CALL ZMAX ?2I CALL SUB 
CALL MODI)- CALL SUB 
CHANGE=ABS(»£NULT-Z(J1> > 
PENULT=2(u:? 
IF   (CHANGE-f.r>5>   ?80#280»250 

280       t-ZiJD/ZQ 
C  BEGIN CALC  FOR  POil'IVE  OAF  FOR  MOMENT»   B 

01=0 
X0=2O0*ATAN(3TäU/2.0) 
PENULT=0 

310   CALL F0RC2M (MOM»S) CALL SUB 
CALL ZMAX (MOM) CALL SUB 
CALL MODIFY CALL SUB 
CHANGE=ABS(PENULT-MOM(Jl)) 
PENULTsMOMUl) 
IF (CHANGE-EPS) 3«">»3«*0# 310 

j 340  ß = MOM(J1)/M0 
| C CALCULATE OAF NEG FOR Z 

JJJ = A9SCIS 
DJjJ=JJd 
XO = 6.2832 * DJJJ 
Cl s 1.0 - COS(XO) - ?.0 • XO/OTAU • 2.0 *SIN(XO)/OTAU 

j j IF (JJJ-1) ^02»«t02»U0«* 
{ : 402  01=C.5»OTAU/(FK-1.0) 

X0=0.75*OTAU 
GO TO H10 

404  01= (0TAU-6.2832*DJJJ) / (FK-3* 0) 
IF (01-0) 406»406»408 

406  01=0 
408  X0=OTAU/2.Ü*3.1<fl6*OJJJ-Dl 
410  PENULTsO 
420   CALL FORCZM (Z»R> CALL SUB 

DO 430 I=1»K 
ZUU-Z(I) 1 

«•30   CONTINUE j 
CALL ZMAX (Z) CALL SUB 
CALL MODIFY CALL SUB ) 
CHANGE=ABS (PENULW (Jl)) 
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r —an—Baaa—BB—HBBBWHga n 

«•55 

«•62 

i*6U 

<+66 

«•70 
uao 

«»90 

510 

PENUL7=Z(J1) 
IF   (CHANGE-EPS)   <*55»U55»«*2Q 
C=Z(J1)/Z0 
XOZsXO 

C  CALCULATE  OAF  NEG FOR  MOMENT 
IF(JJJ-l)   i»62»«»62»«*6U 
D1=0.5»OTAU/JFK-1.0) 
X0=O.75*OTAU 
GO  TO  <*70 
Di=(OTAU-6.2832*DJJJ)/(FK-3.0) 
IF (01-0) 466,466*468 
01=0 
X0=OTAU/2•0*3.1416*0JJJ-Ol 
PENULT=0 
CALL FORCZM (MOMtS) 
00 490 1 = 1.K 
MOM(I)r-MLMd) 
CONTINUE 
CALL ZMAX (MOM) 
CALL MODIFY 
CHANGE=ABS(PENULT-MO«?Jl> > 
PENULTsMOM(Jl) 
IF (CHANGE-EPS) 510»51U»«»80 
E s MOM(J1)/M0 
XOMsXO 

C CALC MAX OEFL DURING FREE VIBRATION 
01=0 
X0= OTAU/2.0 • 3.mi6*(0JJJ+1.0) 
A20= -1.0 -COSiOTAU) *2-0*SlN(OTAU)/OTAU 
A2V= SIN(OTAU)- 2.0/OTAU «-2.0* COS(OTAU)/OTAU 
A2 = A2D »COS(XO-OTAU) • A2V *SIN(XO -OTAU) 
PENULTSO 
CALL FREEZM (Z»R) 
00 610 1=1 »K 
Z(H=ABS(ZU)) 
CONTINUE 
CALL ZMAX (Z) 
CALL MOOIFY 
CHANGE=ABS(PENULT-Z(Jl)) 
PENULT=Z(JD 
IF (CHANGE-EPS) 620»620«606 
AFRS ZUD/ZO 

C CALC MAX MOMENT DURING FREE VIBRATION 
01= 0 
X0= OTAU/2.0 * 3.1«*lb*(DJJJ*1.0> 
PENULTSO 
CALL FREEZM (MOM.S) 
00 6H0 1*1 »K 
MQMf TlzAR^tMOMiD) 
CONTINUE 
CALL ZMAX (MOM) 
CALL MODIFY 
CHANGE=ABS(PENULT-MOM(Jl)) 
PENULT=M0M(J1) 
IF (CHANGE-EPS) 650»650>635 

CALL SUB 

CALL SUB 
CALL SUB 

606 

610 

b20 

635 

6<40 

CALL SUB 

CALL SUB 
CALL SUB 

CALL SUB 

CALL SUB 
CALL SUB 
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o50  MOMFRS MOM(J1)/M0 
IF (IH-1) 660*660*661 

660 DATCMOSJENQ 
FLAST5FIRST*XNCREM«(DATENO-X«0J 
WRITE (6*960) JUG»FIRST»FLAST»K»EPS 
WRITE (6*961) 
WRITE (6*962) 

661 WRITE (6*963) ABSCIS»A1»C1*A2#A1*C1*A2»A»C»AFR»B»E»MOMFR,XOZ»XOM 
690 CONTINUE 
691 CONTINUE 

END 

SUBROUTINE FREEZM (Y»6) SUB 
COMMON W*01*XO*J1*K»OTAO*AS!NW*ACOSW 
DIMENSION W(6*6)*Y(«0)*6(6*6)»ASZNW(6»6)*AC0SW(6*6) 
DO 712 J=1»K 
DlFFsJ-(K-fl) '2 
XsXO *OIFF * Dl 
Y(J) = 0 
7MX-0TAU) 712»70<*»704 

704  DO 711 M=l»6 
QO 7?0 N=M»6 
FMS2*M-l 
FN=2-»N-1 
VsX*(FM**2*FN**2)/2.0 
Y(J) = 6(M*N)*((2«0*ASINW(M*N)/W(M*N)-X.0-ACOSW(M*N))*COS(V-W(M»N)) 
H(ASINW(MrN)-2.0/W(M»N)*2.0»ACOSW(M»N)/W(M*N))»SlN(V-W(M»N)mY(J) 

710 CONTINUE 
711 CONTINUE 
712 CONTINUE 

RETURN 
END 

SUBROUTINE FORCZM (Y*-) SUB 
COMMON W*D1»XO»J1»K»OTAU 
DIMENSION W(6*6)*Y(i»0)*G(6»6) 
DO 820 J=1»K 
DIFFsJ-(K+i)/2 
X=X0 • DIFF * Dl 
Y(d) s 0 
IF(X-OTAU)  802*802*820 

802       IF(X)   820*80<M80if 
80*       00 819 M=X*6 

DO  818  N£M*6 
FM=2*M-1 
FN=2*N-1 
V=X*(FM**2*FN**2)/2.0 
Y(J)s6( 1»N)*(1»0-COS(V)-2.0*V/W(M»N)*2.0*SIN(V)/W(M»N).»*Y(J) 

818 CONTINUE 
819 CONTINUE 
820 CONTINUE 

RETURN 
END 

SUÖROUTINE ZMAX (V) SUB 
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COMMON W»Oi»X0»Jl*K»OTAU 
DIMENSION U<6r6)tYU0)»G(6'6> 
Jl=l 
KK1=K-1 
DO 870 J=liKKl 
IF <Y<JU>-Y(J1>> 870»865»865 

865  Jl =J+1 
870  CONTINUE 
C MAXIMUM Y IS AT Y(J1) 

RETURN 
END 

SUBROUTINE MODIFY 
COMMON M»D1»XO»J1»K»OTAU 
DIMENSION U(6»6) 
ÜIFF 2Jl-(K*l>/2 
X0=X0+DIFF#D1 
FK=K 
D1=2.0*D1/(FK-H.Q> 
RETURN 
END 

10 21 1.00 
10 21 2.00 
10 21 3.00 

0r02 0.005 
0.02 0.005 
0.02  0.005 
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APPENDIX B 

RESPONSE TO INTERNAL PRESSURE 

The response of en enclosing structure to the combination of boom 

loading-and internal pressure will be considered in two way*. First, it 

will be assumed that the internal pressure is a function of the deflec- 

tion of the element considered. This corresponds to the case in which 

the moving elereant is the main contributor to the deflection which is 

causing the internal pressure rise. For the second calculation, it is 

assumed that the internal pressure is known and is not modified by motion 

of the element. This situation occurs if the motion of the element is 

making only a small contribution to the Internal pressure. 

For the first case the relevant equation of motion is 

D (Irr + 2 *-x, Kbx* dxMy 
d4w  , öV , V d*w q(t,x,y) - Gw (B.l) 

where 

0   is the plate stiffness 

w   is the deflection 

x,y are rectangular coordinates in the plate 

y   is the weight/unit area 

g   is the acceleration of gravity 

t   is time 

q   is the boom loading 

G   is a coefficient relating deflection and internal pressu-' 

generated by the deflection. Possible units are pounds/cubic 

inch. 

Following the derivation in Chapter 5 of Norrls, et al.21,  let 

• IL D    (t)  *      cp    (x,y) mnN   '   Tmn Ymnx *" (B.2) 

and 

q(t,x,y)    =*    f(t) q(x,y)  qj 
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where 

ß - I 

D (t) is the dynamic amplification factor for each mode, mn mn 

ill is the participation factor for etch mode mn 

cp (x,y) is the shape factor for each mode 

f(t) is the time variation of applied pressure 

q(x>y) is the spatial variation of pressure 

qt is the peak amplitude of pressure. 

A uniform pressure distribution over the plate is assumed, so that 

q(x,y) = 1.0. Then, for the modal deflection 

cpjnn(X,y^ = sln (mTTX/a) sin (nTTy/8) (B*3) 

the participation factor is 

*m   "   n'DnffinC')» for m and n °"     (B-4) 

• 0    for m and/or n even. 

The participation factor is identical for static and dynamic loading. 

In NorriB, et al.21, it is shown that 

00      00 

q,a(x,y) = V       T    *  tu8  - cp (x.y) (B.5) 
m=l n=l        • 

and that 

ox* r äx_Jay2  dyT' ^rnn   w mn g ymn •Ks* + Szn + Irr) 9_  -  «»   I qL. (B-6) 

No« Eq. B,2 is substituted into Eq. B.I taking into account Eqs. B.5 

and B.6. The following result is obtained: 

• °° a Q 
[      r   -   *     cp   KnnP + wa    D     + -£ D      - wa    f(t)]    =    0 (B.7) t-*,      *•»   g     Tmn TmnL dta mn mn        v   mn ran x   ' »«I   n=l * T 

60 



In order to satisfy this equation, each of the terms of the doubly infinite 

series must be zero. The solution for any term is 

D 
mn 

t 

= • «.» + 0,   f(tf) 8ln V*m + ^ (t"t>)] dt'  (B>8) 
nn -*•  HO 

Compare Eq. B.8 with the solution for external loading only,  which 

is t 

D        •    (ii 
mn mn 

«•fc 

f(t')  sin  [<n    (t-t*)] dt' (B.9) 

The effect of internal pressure is to increase the frequency by the ratio 

/<ua + Gg/V 
V^) - =;  (B.io) 

and to decrease the dynamic amplification factor by the same ratio. For 

the further discussion only the first mode, wll9  will be considered. 

For this case Fig. 4 can be used to determine Dtl provided the frequency 

and D:1 are modified by the ratio in Eq. B.IO. 

For the second case the internal pressure is assumed to be sinu- 

soidal, given by the equation 

q = q2 sin 2TTt/T during forcing 

= 0 after forcing 

»horo 

T   is the duration of forcing, and coincides with the boom duration 

q2  is peak applied pressure. 

For a combination of boom and internal pressure the loading is 

q = qj(l-2t/T) - qa sin 2TTt/T (t * T) 

-  0 (t>T) (B*U) 
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}  solution was obtained for the first mode only using the methods of 

Appendix A. The deflection during forcing is 

Z 2 
=    <li  [l-cos  (-jut)  - 2t/r + — sin  (urt)] Zl 

(B.12) 

where 

" q* 1-4TTVU)*T* ^ Bln (2TTt/T) " 2TT/(JüT)
 
sin(^)^ 

Zl  is the static deflection under qt  * 1.0 

With internal pressure alone (qt = 0) the maxima occur for 

COS (2TTt/T)  =  COS (rjut) 

The relevant maxima occur at the times 

t    = 2MT 
2TT 

(B.13) 

The time of positive maximum is given by n = 1. The time of negative 

Baxlmum is given by the largest even value of n such that t £ T. 

During free vibration the deflection is 

T7 Ä Qi\ [-1.0 - cos (tA)-r) + —- sin (U)T)] cos [(ü(t-T)] + ["Jin (OJT) 
«X J (1)7 

" h+ hCOB (urr)] sin W*-*1^ > - *« Ei ^»TV4TT»
]
 <sln (uff) COS

 
Wt_T)] 

+ [-1.0 + cos (U>T)] Bin [uj(t-T)]) (B.14) 
J 

For qj m  0, the condition for a maximum is that 

cos ['jj(t-T)] = cos (u/r) 

That is, for 

a* 
2TT 

«T 
2  2 2TT 
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Two programs were written to carry out the required computations. 

The one  called Boom-and-Internal makes calculations of maxima when both 

qt  and qa are not zero. No flow chart is provided for it as the program 

is a simplification of the Multiplate program in Appendix A. The Input 

parameters are the same as for Multiplate with the addition of Qx and Q2 

which are the coefficients of the boom and internal pressure terms. The 

maxima of Eqs. B.12 and B.14 were determined by trial using the same 

system as in Multiplate. 

When qa = Qj •-* Of  the terms of the maxima can be determined analy- 

tically, so « special program called Sinusoidal was written to calculate 

this case. There are no data cards needed for this program as the input 

is part of the program instructions. 

Both programs were written in Fortran IV and run on a Burroughs 

B5500 computer. Compilation times were about 50 seconds. Sinusoidal 

executed at a rate of 0.12 seconds per abscissa value, Boom-and-Internal 

took 0.15 seconds for each. 

The results of the Sinusoidal program are in Fig. 7. This shows 

some of the same features as the response to booms but the first peaks 

are higher and later peaks are lower. 

The results of Boom-and-Internal for Q2 = 0.25 and 0.50 are shown 

in Figs. 8 and 9. Evidently the main effect of internal pressure is to 

decrease the first hump in the response curve. Otherwise the curves are 

essentially the same as those in Fig. 4 for boom loading only. 



PROGRAM BOOM AND INTERNAL 

C  PROGRAM COMPUTES MOTION OF A i OOc SYSTEM TO A BOOM LOADING AND AN 
C  INTERNAL PRESSURE IN THE FORM OF A SINE WAVE 

COMMON Dl.X0»Jl»K»OTAU»ZiABSCX5»»l»«2»tPS 
DIMENSION 2(40) 

901   FORMAT (9H ABSClSSA»i*X»4HDP0S»4X*4KDNEe»3X»5HDFREE»«*X»4HTP05»4Xf 
1   4HfNEG»3X*5HTFREE) 

950  FORMAT(52H DAF FOR 1D0F SYSTEM UNDER SINUSOID AND BOOM LOADING) 
955  FORMAT (/10X*2HK=>I2»4X »4HEPS=»P6.3»4X»3HQ1=*F6.3» 4X»3HQ2=»F6.3/) 
963  FORMAT (1X*F6.2*6F8*3> 
986 FORMAT 113*I3»5F6.3) 
987 FORMAT (13) 

WRITE (6*950) 
READ (5*987) JGROUP 
00 691 JUGslfJGROUP 
READ (5*986) JEND*K»FIRST.DELTA»EPS*G1»Q2 
WRITE (6.955) K»EPS*Q1»Q2 
WRITE (6»90D 
FKSK 
Osi,b/(FK-1.0) 
DO 690 III=i»JEND 
FXISsIll 
ABSCIS = FIRST+DELTA *(FIII-1.0) 
OTAU = ABSCXS*6.2832 

C**««*CALCULATE 2P0S 
D1=D 
X0=2.0*ATAN(OTAU/2.0) 
PENULT s 0 

250  CALL F0RCE2 
CALL ZMAX 
CHANGE s ABS(PENULW?JD) 
PENULT S 2(J1) 
IF (CHANGE-EPS) 280*280*250 

280   ZPOSSZ(JI) 
XPOS s XO/OTAU 

C«*»»»CALCULATE ZNEG 
JJJ s ABSCIS 
OJJJSJJJ 
XO s 6.2832*DJJJ 
IF (JJJ-1) 402»402*404 

402   D1=0.5*OTAU/(FK-1.0) 
X0=0.75«OTAU 
GO TO 418 

404  01=(OTAU-6.2832*DJJJ>/(FK-3.0) 
IF (Dl-D) 406*406*408 

406  D1=D 
408  X0=OTAU/2.0+3.1416*DJJJ-Dl 
4*8  PEWwLT s C 
420  CALL FORCEZ 

DO 430 1=1»K 
HI)  s -Z(I) 

430  CONTINUE 
CALL ZMAX 
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CHANGE  =  ABS(PEN0LT-2(JD) 
PENULT=Z(J1) 
IF   (CHANGE-EPS)   <+55#455,420 

«455       ZNEG S  Z(J1) 
XNEG  =  XO/OTAU 

^••••CALCULATE  ZFREE 
DUD 
XO  :  OTAU/2.0*3.1<.16»(DJJJ-H.O) j 
PENULT = 0 j 

606  CALL FREEZ 
00 610 I=1»K ! 
Z(I) = ABS(ZU)) j 

610   CONTINUE 
CALL ZHAX 
CHANGE  =  AöS(PENULW(Jl>> 
PENULTSZ(JI) 
IF (CHANGE-EPS) 620»620»606 [ 

620  ZFREE S Z(J1) 
XFREE = XO/OTAU 
WRITE   (6*963)   ABSCIS»ZPOS#ZNEG»ZFREE»XPOS»XNE<*#XFREE 

690 CONTINUE 
691 CONTINUE 

ENÜ 
C 
^•••••SUBROUTINE FORCEZ 

SUBROUTINE FORCEZ 
COMMON D1»XO»J1»K»OTAU»Z»^3SCIS»Q1»02»EPS 
DIMENSION ZUO) 
00 820 J=lfK 
DIFF = J-(K*l)/2 
X = XO • DIFF • Dl 
Z(J) = 0 
IF(X-OTAU) 802»802»820 

802 IF(X) 820»803»803 
803 AA=ABS(ABSCIS-1.0) 

Zl   = 1.0-COS(X)-2.0^X/OTAU*2.0/OTAU^SIN(X) 
IF (AA-EPS) 8lO»8lO»804 

8ÜU   12-   -ABSCIS*»2/(1»0-ABSCIS**2)»(-SIN(X/ABSCIS) • SIN(X)/ABSCIS) 
GO TO 815 

610   Z2=  -0.5»lSIN(X)-X*COS<xn 
815  Z(J) S Q1»Z1 • QZ*2Z 
820   CONTINUE 

RETURN 
END 

^•••••SUBROUTINE FREEZ 
SUBROUTINE FREEZ 
COMMON D1»XO»J1»K»OTAU»Z»ABSCIS»Q1»02»EPS 
DIMENSION  2«t0> 
DO 712 J=1»K 
DIFF = J-(K«-l)/2 
X S XO • DIFF»Dl 
Z(J» = 0 
IF(X-OTAU)   712»70<t#70<» 

70i»       AA=ABS(ABSCIS~i.O) 
Zi       s   (-1.0-COS(OTAU)+2.0^SIN(OTAU)/OTAU>*COS(X  -OTAU) 
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1  •(SIN<OTAU)-2.0/OTAU*2.0*COS<OTAU)/OTAU)*SIN<X -OTAU) 
IF (AA-EPS) 710»710»706 

706   Z2=-(ABSCIS/(1.0-ABSCIS«*2))*(SIN(OTAU)*COS(X -OTAU)•(-1.0+ 
1  COS(OTAU)J*SIN(X -OTAU)) 
GO TO 711 

710 22a  3.mi6»C0S(X-0TAU) 
711 Z(J) s Q1*Z1 + Q2*Z2 
712 CONTINUE 

RETURN 
ENU 

C*«**#*SUBROUTINE ZMAX 
SUBROUTINE ZMAX 
COMMON Dl»XO»JlrK»OTAU»Z»ABSCISrQl*Q2»EPS 
DIMENSION ZUO) 
Jin 
KK13K-1 
UO  870  J=i»KKl 
IF (Z(J*1)-Z(JD) 870»865r&65 

865  Jl s U+l 
870  CONTINUE 

DIFF = Jl-<K*l)/2 
XO s XO • DIFF * Dl 
FK s K 
01 : 2.0*D1/<PKU.0> 
RETURN 
ENG 

?OATA 
« 

25 21 
20 21 
15 21 
15 21 

?END OF OECK 

C078SEAMAN/TAPE5 

0.5 
1.6 
2.7 
3.7 

0*02 
0.02 
0.02 
0.02 

0*005 1.0 
0.005 1.0 
0.005 1.0 
0.005  1.0 

0.0 
0.0 
0.0 
0.0 



PROGRAM  SINUSOID 

C  SINUSOID CALCULATES THE PEAK POSITIVE. NEGATIVE» AND FREE RESPONSE 
C  OF A 1 DOF SYSTEM TO A LOADING IN THE FORM OF A SINE WAVE EXTENDING 
C  FROM ZERO TO 2 PI » WITH NO LOADING THEREAFTER 
900 FORMAT (1X»F6.2*2X»6F8.3) 
901 FORMAT (9H ABSCI5SA»i*X»<*HDPQS»4X»4HDNEG*3X»5HDFREEf4X»<»HTP0S»4X» 

1  <*HTNEG.3X»5HTFREE) 
902 FORMAT (35H OAF FOR lOOF SYSTEM UNDER SINUSOID) 

WRITE (6*902) 
WRITE (6*901) 
DO 100 11=1*200 
IF (11-50) 10.5*10 

5    DPOS=1.5708 
DNEG=-3.1<tl6 
DFREE=3.1416 
TPOSS0.5 
TNE6=1.0 
TFREE=1.0 
ABSCIS = 1.0 
GO TO 90 

10   311=11 
ABSCIS=BII*0.02 
DPOS = ABSCIS/(1.0-ABSCIS>«SIN(6.2B32*ABSCIS/(1.Q*ABSCIS)> 
TPOS = 1.0/(1.0*ABSCIS) 
M s 0.5 • 0.5*ABSCIS 
FN = 2*M 
DNEG = ABSCIS/(1.0-ABSCIS)*SIN(6*2632*FN*A8SCIS/(1«0*ABSCIS)) 
DNLG2= ABSCIS/(1.0-ABSCIS**2)*SIN(6.2332*ABSCIS) 
TNEG   =   FN/U.O + ABSCIS) 
DIFF = -DNEG • DNEG2 
IF (DIFF) 15*20*20 

15    DNEG=DNEG2 
TNEG=1.0 
N = ABSCIS • 1*0 

20   DFREE = 2.0*ABSCIS/C0-ABSCIS**2)*SIN(3.1<*16*ABSCIS)*(-1.0)**N 
M S ABSCIS +1.5 
FM = P* M• \ 
TFREE = 0.5 • FM/4.0/ABSCIS 

90   *RITE (6*900) ABSCIS»DPOS»DNEG.DFREE»TPOS»TNEG»TFREE 
100   CONTINUE 

END 
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APPENDIX C 

NONLINEAR LOAD-DEFLECTION RELATIONS 

The purpose of this appendix is to determine the form of the large- 

deflection relations between load and deflection, and between stress and 

deflection for square plates. These relations will be used in the next 

appendix as a basis for reducing available experimental data. 

In the literature the large deflection of square plates has been 

determined only for some specific values of Poisson's ratio and certain 

boundary conditions; the available solutions do not precisely fit the 

present requirements. An approximate rather than rigorous solution seemed 

adequate, and it was nlso desirable to have the results in analytical 

rather than graphical form. A modification of the method recommended by 

Foppl (1924) was used for the calculations. 

The method of Foppl is to seek a solution as the sum of two parts: 

one for membrane and one for bending behavior. Thus the applied loading 

can be represented as 

Q = %*% (C.l) 

where 
qa4 Q = g^r , a nondimer ional loading parameter and subscripts refer 

to bending and membrane, 

q = pressure 

a = length of the side of the square plate 

In Föppl's approach, the relations between the Q's and the deflec- 

tion are taken from the solutions of the small deflection bending; *nd of 

the membrane problems. These solutions have the form 

%   '   Ao?  • 
(C.2) 

Sn   "    Bo5' 

so that Eq. C.l beco»es pRECEOlNS PAGE BLANK 



Q = A0§ + B0§
3 (C.3) 

where 

§  is the nondlmenslonal deflection w0/h 

w0  is the central deflection 

A0 and B0 are functions of Poisson's ratio. 

When this cubic equation is solved, the membrane and bending stresses 

can be determined from 

sb = CoC 

S  = D0f m     Ba 

(C.4) 

where 

s = 24 
Eh3 

a   = stress 

C0 and D0 are functions of Poisson's ratio, v. 

The natural boundary conditions for this solution are the simple support 

for bending and the immovable edge for membrane action. However, in our 

case the edge is movable. Therefore, the sought solution was assumed 

to have the form of Eqs. C.3 and C.4 but with unknown coefficients Bt 

and Dj.  Further, it was assumed that B and Bt would vary in the same 

way as a function of u so that 

s?te} • fete} (c-5) 

and similarly for D and Di. 

The steps taken in the solution were the following: 

1. Find the relations between deflections and pressures for the 

separate cases of membrane and bending, that is, find A0(v) 

and B0(u) in Eq. C.2. 

2. Use the theoretical solution of Levy15 to determine the coef- 

ficients Bt and Dt (for the case y = 0.316). 

3. Determine the coefficients Bt and Di for the case y = 0.23 

using Eq. C.5. 
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The values of A0 and C0 are readily determined from Chapter 5 of 

Tlmoshenko (1959). The results are given in Table c.l. 

TABLE C.l 

COEFFICIENTS FOR LARGE DEFLECTION OF SQUARE PLATES 

v A0 Bo Co Do Bi Di 

0.23 

0.316 

21.7 

22.8 

28.65 

31.3 

5.91 

6.635 

2.134 

2.582 

12.8 

14.0 

1.32 

1.40 

The coefficients B and D were determined from the analysis on p. 419 

of Tlmoshenko (1959) for the membrane problem. The following expressions 

were taken for the displacements 

w = 

u  = 

V  = 

TTX TTy 
w0 cos — cos -*• 9 a     a 

. 2nx   ny 
c sin   cos -Jt- 

a     a 

, 2ny   nx 
c sin --*- cos — 

a     a 

(C6) 

where u, v are displacements in the plane of the plate in the x and y 

directions, respectively, and the origin is at the center of the plate. 

The strain energy of the plate is then 

V = 
Eh 5TT< 

2(l-u3) \  64a w0
4 " 

5-3 y 
3a 

„2   a  r9~f  a  32 (l+v)i  2 (C7) 

The principle <j£  virtual displacements was used then as outlined in 

Tlmoshenko  to find c and w0 as functions of the applied pressure. The 

values of B and D in Table 1 are the calculated results. 

The theoretical values of Levy18 were used to find Bt  and l)l.    His 

results were plotted as membrane and bending stresses versus applied 

pressure for the case y = 0.316. Two relations were used for the deter- 

mination. The first was the requirement that the deflection in Eq. C.4 
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be unique, that is, that 

•2  _ V 
c7 

_m 
(C8) 

Levy's results were used for S. and S and a value of D, = 1.40 was found 
h      m * 

(see Fig. C.l). Then Eqs. C.3 and C.4 were combined as 

• - k % • * &'' (C9) 

Using Levy's values for Q,  S    and S , a solution was obtained for Bt. 

The determination of Bt  is shown in Fig. C.2 from which it  is evident 

that Kq. C.9 is a good representation of the  relation.    Following this 

evaluation of Bt and Dt for v = 0.318, Bt and Dt for u      0.23 were cal- 

culated using Eq.  C.5. 

The following equations are then available for solving large deflec- 

tion problems in square plates with simply supported boundaries. 

Q    =    A0§ + Bj §: 

Sb=    C0§ 

Sm=    D1§ 

(CIO) 

In the next appendix experimental values are used to re-evaluate the 

coefficients A0 through D1  in these equations. 

?2 



*     s 

TA-»0«3-l3 

FIG. C.l    GRAPH   FOR  DETERMINATiON OF  D, 
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FIG. C.2   GRAPH  FOR  DETERMINATION  OF  B 
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APPENDIX D 

EXPERIMENTAL DATA ON WINDOW RESPONSE 

Load-deflection and stress-deflection relations can be obtained 

from results of several experimental studies. This study is based on 

the results of Bowles and Sugarman (1952), Orr (1957), and Freynik (1963). 

The data are fitted to equations in the form of those in Appendix c. 

Load-Deflection Relations 

A load-deflection equation like Eq. C.3 will be determined first. 

Q - A05 + B0§
3 

where 

Q = nondimensional load • § (—)* 
£    h 

§    = nondimensional deflection a w0/h 

q    = applied pressure 

E    = Young's modulus 

a    = distance between supports of square pane 

h    = thickness 

w0 s center deflection 

The value of A0 will be taken as 21.7,  the theoretical value obtained 

from small-deflection plate theory for Poisson's ratio equal to 0.23. 

The data will be related to this equation to determine the value for 

B0, and to Indicate how well the data follow the analytical equation. 

We will use the data on ultimate deflection  (deflection just preceding 

fracture)  t*   i Orr  (1957) and from Bowles and Sugarman (1952).      The 

resulting equation should be especially applicable at the utllmate 

strength of panels,  but will not necessarily describe the load-deflection 

relation at low pressures.    The data used are In Tables D.l and D.2. 

0 r's results represent Individual panels whereas Bowles and Sugarman 

tested 30 or 40 panels of each size and reported mean    values and stan- 

dard deviations from the mean.    The results are treated here as though 

they were from square panels although Orr's panels were rectangular, 
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TABLE D.l 

ULTIMATE DEFLECTION AND BURSTING PRESSURES 

(Data from Orr) 

i     h 
Thickness 

(in.) 

aa 

area 
(in.3) 

a/h 
q 

Max. Pres. 
(psf) 

Q* 
Nondlm. 

Pressure 

wo 
Max.  Defl. 

(in.) 
S = T? 

PLATE 

0.2373 6720 346 52.25 516 1.200 5.05 

0.240 6720 342 51.87 491 1.189 4.95 

0.303 6720 271 80.65 300 1.200 3.96    ! 

0.301 6720 273 56.17 214 1.000 3.32 

0.2344 8360 389 39.26 631 1.300 5.54 

0.2453 8360 373 36.02 84 1.200 4.89    | 

0.3045 8360 300 54.09 305 1.200 3.94 

0.305 8360 299 54.02 303 1.200 3.93 

0.242 9840 410 32.52 638 1.400 5.78 

0.239 9840 416 23.58 485 1.200 5.02 

0.303 9840 327 44.56 355 1.311 4.33 

0.304 9840 327 44.00 343 1.300 4.28 

!    0.369 9840 269 |      56.13 204 1.200 3.25 

0.372 9840 267 57.85 203 1.200 3.23 

0.114 8640 816 16.72 5120 1.400 12.3 

SOLEX 

0.248 8640 387 I      54.22 740 1.400 !      5.65 

0.373 8640 257 73.20 197 1.200 3.22    1 
0.363 Ö64Ü 2a l 61.36 148 1.000 2.61 

0.255 11530 421 38.56 847 1.502 5.88 

0.248 11530 433 41.52 1015 1,600 6 .45 

  

Jjrr , E was taken as 107 psl 
ED 
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with aspect ratios between 0.6:1.0 and 1.0:1.0. The data points are 

plotted in Fig. D.I. The trend line is given by the equation 

Q = 21.7g + 2.80§! (D.l) 

which appears to fit the data quite well. For comparison the theoretical 

results of Levy (1942) for Polsson's ratio of 0.316 are also shown. 

A check can be made to determine how well Eq. D.l predicts deflec- 

tions at low loads, using the data of Bowles and Sugarman on four panels 

(listed in Table D.3). These four sets of load-deflection points are 

shown in Fig. D.2 with the theoretical curve of Eq. D.I. Eq. D.l will be 

used in subsequent work, with the understanding that its accuracy is 

limited at small deflections.  It may be noted that the data from the 

tests of the l/8-inch plate are far from the other points. This tendency 

is noted in later graphs also. The discrepancy may be caused by using 

the mean thickness of 0.122 inch in calculating §, Q, and S or there may 

have been some experimental error. 

100 

i 
< z 
o 
55 z 

10 

10 

I     Mill 1—I   I   I I 

O DATA  OF BOWLES AND  SUGARMAN 
• DATA  OF 0RR 

J 1     I    I   I  I I 

Q-2I7$*2.80£3> 

W*^< THEORY OF LEVY 
U -0.316) 

J 1     1    I   1  I II 
100 1000 

T\ 

i I      I     1    I   i  1  I 

10,000 

T|-«0«»lS 
0- 21.7$ 

FIG. D.l    RELATION BETWEEN APPLIED PRESSURE AND DEFLECTION AT RUPTURE 
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TABLE D.3 

STRESS DATA 

(Data from Bowles and Sugarman) 

h* q Q**            j ? = wo/h °b am sb**   1 S ** 
HI 

Thickness Pressure Nondira. Nondira. Bending Membrane Nondim. Nondim. 
(la.) (psl) Pressure Deflection Stress Stress Bending Membrane 

(P8i) (psi) Stress Stress 

0.122 0.05 57.8 1.61 595 215 6.40 2.315 
0.10 115.5 2.40 795 415 8.55 4.465 
0.15 173.2 2.98 900 580 9.68 6.24 
0.20 231.0 3.43 950 750 10.23 8.07 
0.25 289.0 3.78 

0.195 0.05 8.9 0.59 577       i 92 2.43 .39 
0.10 17.8 0.92 950 200 3.99 .84 
0.15 26.6 1.19 1222 297 5.14 1.25 
0.20 35.5 1.41 1430 400 6.01 1.68 
0.25 44.4 1.62 1595 525 6.71 2.21 
0.30 53.3 1.81 1725 645 7.25 2.71 
0.35 62.2 1.96 1827 752 7.68 3.16 

0.25 0.1 6.55 0.42 670 40 1.715 0.10 
0.2 13.10 0.70 1240 160 3.17 0.41 
0.3 19.65 0.93 1705 295 4.37 0.75 
0.4 26.20 1.13 2075 435 5.31 1.11 
0.5 32.75 1.32 2367 563 6.06 1.44 
0.6 39.30 1.48 2615 685 6.69 1.75 
0.7 45.85 1.63 2825 815 7.23 2.09 
0.8 52.40 1.76 2990 1       950 7.65 2.43 

0.373 0.2 2.65 0.25 595 45 0.684 0.052 
0.4 5.42 0.41 1170 100 1.345 0.115 
0.6 7.94 0.57 1730 180 1.99 0.207 
0.8 i      10.58 0.70 2270 270 2.61 0.311 
1.0 13.23 0.81 2740 380 3.15 0.437 
1.2 15.87 0.92 3170 520 3.64 0.598 
1.4 18.52 1.03 
1.6 21.15 1.12 
1.8 23.80 1.21 
2.0 26.47 1.30 
2.2 29.10 1.38 

*  The thickness of the specimen tested was not known, so the mean 
thickness for the group of specimens was used. 

** Nondimensional pressures and stresses were calculated using E - 107 psi 
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Ultimate Deflection and Ultimate Strength 

The deflection which a panel can undergo before falling is closely 

related to the thickness of the panel. The deflection data of Tables 

D.l and D.2 are plotted in Figs. D.3 and D.4 to show this relation. It- 

is clear from the figures that there is a marked difference between the 

results of Orr (1957) and of Bowles and Sugarman (1952),  and there is 

a noticeable difference between the plate and sheet glass results in the 

lattor reference. 

To predict ultimate strength of glass panes it is useful to plot 

nondimensional maximum pressure against the thickness ratio, a/h, as in 

Fig. D.5. Again there is a distinct difference between the results of 

Bowles and Sugarman (1952) and of Orr (1957), The preasures taken by 

the panes of the former are about 2.5 times those in the latter. This 

difference is only partly accounted for by the fact that Orr's panes were 

rectangular and tested at a slower loading rate. 

To indicate the probable effect of testing rate on ultimate strength, 

we can examine the equation given by Frownfelter (1959) 

max       .„,,„  da — « = + 0.5 log10 — 

where 

da/dt    is the rate of application of stress in psl/min 

a0      is a reference stress 

With a reference stress of 2000 psi, this equation is plotted in Flg. D.6. 

In addition, the recommended strength values from Pittsburgh Plate Glass 

(1964) are shown and straight lines were drawn on the figure to indicate 

the trend of the points. Comparison of the testing rates of Bowles and 

Sugarman (1952) with those of Orr (1957) Indicates that Orr's strength 

values should be about 75$ of those from Bowles and Sugarman. 

Stress-Deflection Ratios 

Equations relating maximum stress and central deflection were deter- 

mined using the data of Bowles and Sugarman (1952). The equations have 
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the same form as those of Appendix C, that is 

where 
oa- 
Eh1 

Sb = Col 

Sm = D«55 

a = stress 

C0, D0 = constants 

b,m = subscripts denoting bending or membrane. 

The values used are listed in Table D.3 for the four panes instrumented 

with strain gageb to indicate stress in the center of the pane. The data 

plotted in Figs. D.7 and D.8 give the following relations 

Sb = 4.4$ 

S  = 0.82?: 
m       5 

(D.2) 

(D.3) 

The bending stresses are about 65$ of those given by Levy (1942) while 

the membrane stresses are 65$ to 80$ of Levy's values. It is improbable 

that these differences can be explained by the fact the Poisson's ratio 

for the glass «as about 0.23, while Levy used u = 0.316. Because of the 

coefficient of 4.4 instead of 5,91 as from the linear analysis, strsss- 

deflection results do not coincide with the linear theory even for small 

deflections. 

Equations D.2 and D.3 are relations between the total stress in the 

center of the plate and the total deflection at that point.  In the ana- 

lytical work it will be necessary to have expressions relating stress and 

deflections in the first mode only. According to the linear theory of 

Appendix A the total static stress is 0.897 of the first mode stress; the 

total static deflection is 0.976 of the first mode deflection. We will 

assume that these factors from the linear theory are valid for bending 

but not for membrane stresses; that is, the total membrane stress is 

contributed by the first mode. Then 
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4,4  (0,076)1! - 4.8?! (D.4) 
bl    0.897 , 

Sffll = 0.82 (0.976 5X)
2 = 0.78,5^ (D.5) 

where the subscript 1 refers to the first mode.  In some cases we will 

want to relate first mode stresses to total deflections. The appropriate 

relations are 

4'4 %   m    4.9?! (D.6) 
bl    0.897 

J   = 0.82£2 (D.7) fflx 

or combining, 

Sj = 4,9§ (1 + 0.167|) (D.8) 

Stress-Loading Relations 

The bending and membrane stresses can be comparsd as direct functions 

of the loading.  From the previous data reductions we have that 

Q Ä 81,75 + 2.80§8                  (D.l) 

Sfe * 4.4? (0.6) 

S = 0.82§2 (D.7) 
m 

Substituting we obtain 

Q = 4,&3 Sv + 0.0329 S * (D.9) 
b        b 

and 

Q = 24.0 S x/2 + 3.77 S V2 (D.IO) m m 

The data of Bowles and Sugarroan (1952) and Freynlk (1963)1 are compared 

with these equations in Figs. D.9 and D.10. The theoretical results of 
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Levy (1942) are also included. Equation D.9 agrees fairly well with 

Levy's results; the data of Bowles and Sugarman appear to fit Eq. D.9 

somewhat better than the curve from Levy. The membrane stress results 

show a marked difference between the curves from Levy and Eq. D.10. The 

experimental data are divided between the two curves. 

All of the stress-loading data above is for stresses from one-quarter 

to one-half the ultimate stress. Therefore, prediction of the stress con- 

dition at failure would require some extrapolation from the available data, 

Because the data do not correlate well with the theoretical or quasi- 

theo: etlcal curves at high stress levels, it does not appear that stresses 

at failure can be predicted now. This situation is unfortunate because 

it means that ultimate strength data of glass specimens cannot be used 

directly to predict failure of glass panes. 

Statistics of Failure 

Strengths of glass specimens and window panes appear to vary widely 

from test to test; such variations are commonly observed with brittle 

materials. The experimental results have usually been reported in terms 

of the normal distribution although the data may fit some other dist.rl- 

bution equally well. 

Table D,4 lists the coefficients of variation (standard deviation 

divided by the mean) of the bursting pressure and the central deflection 

for the data of Bowles and Sugarman (1952).  The variations appear to 

increase with the thickness of the specimens, as expected for a brittle 

material.  It should be noted that these variations pertain to the pres- 

rure and deflection, not to the normalized quantities, Q and §. There- 

fore, the stated variations include the effects of randomness in the 

glass strength and in the glass dimensions. 

Additional data on the statistics of the strength of glass are listed 

in Table D.5. The value given by Orr (1957) is for his estimates of the 

stress at failure in his glass panels. The other data are from strength 

tests on other types of glass samples. Note that these coefficients of 

variation pertain to stress at failure whereas the data of Table D.4 

refer to applied pressure and ultimate deflection. Because we do not 
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have a sure relation between stress and applied pressure at failure, we 

cannot relate the coefficients of variations of these quantities. Hence, 

a knowledge of the statistical variation of breaking stress does not lead 

to a knowledge of the statistical variation of bursting pressure. 

TABLE D.4 

STATISTICAL DATA ON FAILURE 

(Data from Bowles and Sugarman) 

j      Sample 
Description 

No.  of 
Panels 

Bursting Pressure 
Coeff. of Variation 

(#) 

Central Deflection 
Coeff. of Variation 

1/8" plate 40 17.2 8.6 

3/16" plate 30 17.9 9.2 

i/4" plate 30 25.0 12.1 

3/8" plats 30 23.7 13.9 

24 oz sheet 30 14.0 7.55 

32 oz sheet 30 15 .9 7.17 

3/16" sheet 30 26.8 10.95 

TABLE D.5 

STATISTICAL DATA ON BREAKING STRESS 

Source 
Coefficient of 

Variation Type of Glass 

Frownfelter       (1959) 22.0 - - 

i    Orr      (1957) 19.7 Plate and solex panes 

McKinley     (1964) 25.0* Flate and window 

Hasselman and Fulrath (1966) 12.7 Sodium Borosillcate 

Value recoraraendeä by McKinley for use in estimating safety factors. 
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APPENDIX E 

DYNAMIC AMPLIFICATION FACTOR:  NONLINEAR 

When plates deflect beyond a small deflection range, their apparent 

stiffness increases because of membrane action. This change in stiffness 

increases the natural frequency and decreases the arcolitude of motion. 

The purpose of this appendix is to determine the magnitude of these 

changes for V.ie  problem of window response to booms,  ri.e solution is 

developed first for the motion in the fundamental mod© only, and then 

estimates are made for the effects of the higher modes. 

First Mode Only 

The equation of motion in the first mode has the following general 

form 

dtz   m  s     m v   ' 

where 

§ is the nondlmensional central deflection, w0/h 

k is stiffness which is a function of deflection 

Q   is the maximum amplitude of the nondlmensional forcing function 

f(t) is the temporal variation of that function, 

From the solution of Eq. E.l, we want to develop curves of maximum 

deflection as a function of the period ratio, WT/2TT, and of the loading. 

Hence, we must choose to plot deflection as a function of loading for 

specific values of UJT/2TT or as a function of U)T/2T7 for specific loadings. 

The latter course seems appropriate because we can expect the deflection 

maxima to vary monotonlcally with load. The load values chosen are those 

producing specific values of static deflection. The next steps are to 

introduce the nonlinear relation for k(%)  and to replace ü   by the static 

deflection it produce?. 

The load-deflection relation in Eq. C«10 will be used although it 

pertains to total deflection, not just first mode deflection» This is a 
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fairly small approximation because the difference between static total 

and first mode deflections is only 2.5$, The relation is 

Q = A05 + Sj§
3 = k(?)§ (E.2) 

so that the equation of motion is 

d"  A      B V(t)     k(?s)QD 

»»•if "•&«•' - -V- = rEfrrf(t)        (E-3) 

Note that k(§ )/m    =    (A0§    + B,5 *)/•§    is the square of the natural 
S S       S      8 

circular frequency, and Q /k(§ ) is the static deflection § under the 

load o . Now simplify the equation to the form 

!jl$ + ar(g+ «g») = a(§s + e§g
3) f(t) (E.4) 

where 

or = A0/m 

€  *  Bj/A0 

Equation E.4 was solved numerically using an Adams predictor-corrector 

method for integration. The computer program used had been previously 

developed for a three-degree-cf-freedom system and reported by Bycroft 

(1965). The program was simplified slightly and changed to accept a 

sharply defined N-wave as the loading. The deflections and velocities 

were printed out after each step in the integration. Positive, negative, 

anc* free vibration maxima were taken from these listings by hand. The 

results are plotted in Figs. 12 - 15. 

The program is listed at the end of this appendix. It is written 

In Algol for use on a Burroughs B5500. The compilation time is 40 seconds, 

and the execution time per abscissa vniue averages 14 seconds. The input 

data is entered on two types of cards. An example of input is given in 

the comment cards at the beginning of the program. The first card lists 

the number of abscissa values for which calculations are to be made. One 

card of the second type is required for each abscissa. On the second type 

of cird the variables are 
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XI      = § , the static deflection under the maximum pressure in 
S 

the loading function 

ABSCISSA     u      (JUT/2TT 

FINAL    = time at which calculation is terminated.  It should be 

set at some value greater than 1.0 such that at least 

one free vibration maximum is reached. 

EPS     = e, the coefficient of the nonlinear terra. 

In the program the forcing function is the static deflection times 

a temporal function. If a response to a particular pressure level, Q , 

is required, the appropriate vp.lue of § can be found from the equation 
s 

%   = A0(?8 + *5S
3) 

Alternatively, the 32nd card of the program could be changed from 

ALFA (XI + EPS x XI *3) x OMEGA * 2; 

to 

ALFA «%. (QQ/A) x OMEGA * 2; 

where the values of O and A would have to be supplied. 

The program output lists the values of ABSCISSA and XI and then 

prints four columns of figures, headed TIME, DEFLECTION, VELOCITY, and 

DEFL/XI. The values printed under these headings are t/r, §, Td§/dt, 

and §/£ . The latter in  the dynamic amplification factor. 
S 

Higher Modes 

A rigorous analysis of the contribution of higher modes is not made 

for the large deflection case. However, some estimates are required of 

the importance of these higher modes. From Appendix A the contribution 

of these modes to the linear solution is known. What is needed now is 

a means for estimating changes in the amplitudes and frequencies of the 

higher modes. Such estimates will be njade under the assumption that the 

motion in the higher modes can be merely added to that for the fundamental 

mode. With this assumption, the problem can be treated as that of a plate 

with stresses in its plane. 
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The deflection of  a plate with stresses  in  its  plane can be derived 

from section 93  of Timo-shenko  (1959). The result  is 

Sit     f V                         sin(mTTx/a)sin  (nT7y/a)                ,       . 
D   L. L, r/m

z+n2,,   (m*Nv + n*Nv + 2mnNvv).      
(E,5) 

D=I n=l 
m,n odd 

16q 

Q=1 n=l  mn I (•  ,  . ., 
a' n-'a2D 

i^D   J-   L*            r/»a+n*»a , (mzNx + n
2Nv + Z^N•)-! 

u=l n=l ran [(—,—)3 + * * ^gllL  an xy J 

where N , N , and N  are forces per unit width in the midplane of the x  y      xy 
plate. They are constants in Eq. E.5.  In our dynamic case N , N , and 

N  all vai-y over the surface of the plate, oscillate at the fundamental xy 
frequency, and may be compresslve or tensile. However, Eq. E.5 gives an 

indication of the nature of the effect of the membrane stresses on the 

deflections in the higher modes.  In the central region of the plate, 

the membrane stresses are tensile and the shear is zero. Therefore the 

assumption is made that N - N and N  =0. 
x   y     xy 

Then 

CD       CO 

16qQ  y» r^ sin (mTTx/a)  sin (nny/a)    /_ _» 
•     £t *-i «n(m2+n2)/a*  [(m<n2)/a2 + NTPDJ 

(E,6) 
m=l n=l v           "       LN             '             x'       J 

m, n odd 

The moments are computed from 

„  , .„ (£• + v |*) etc (B.7) 

The moments are then 

,aa(l+v)  r*  r* H(ra,n) sin (mTtx/a) sin (nny/a)   ,_, ., 
n*       L   L srtrar*! i N ivn*Dj—      (E-8 

m=l n=m   x        x ' 

00      CO 

M   = Ha 
X 

odd only 

where 

H(m,n) = 1/2 for m = n 

= 1 for m = n 

Evidently each term in the series for moment is reduced by the factor 

 1  
1 + N.aV[naD(raa+n:i)J 

A 
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from the value it would have if there were no membrane stresses. Using 

this factor a general expression can be developed to relate reduction of 

amplitude in the m.nth mode to reduction in the first mode. Let R (m,n) 

be the ratio of amplitude for the nonlinear case to that for th« linear 

case. Then 

1 + 2[l/RE(l,l)-l]/(m
z
+n

2) 
>.9) 

As an example let us assume that the amplitude in the fundamental mode 

was reduced by 30$. Then by how much are the higher modes reduced? 

The results for this example are in Table E.l. 

TABLE E.l 

AMPLITUDE REDUCTION FOR HIGHER MODES 

Mode 
Nonlinear/Linear 

Amplitude Ratio N a2/TT2D(m2+n2) 

1,1 

1,3 and 3,1 

3,3 

3,5 and 5,3 

0.70 (assumed) 

0.92 

0.95 

0.97 

0.428 

0.086 

0.048 

0.025 

The values in the table indicate that the amplitudes of the higher 

modes are reduced by one-fifth (or less) as much as the first mode. 

The natural frequencies are also altered by large deflections. The 

estimate of the frequency change is  mnde on the same basic as the ampli- 

tude estimate above. That is, the modes are considered separately and 

the in-plane stresses caused by the fundamental mode are the source of 

the variations from the linear theory. The approach used is to calculate 

the strain energy and kinetic energy and equate them to find the natural 

frequencies. 

Again taking the results of paragraph 93 of Timoshenko (1959), 
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the deflection is assumed to have the form 

00      CO 

W  = L      I   tpmr  sin(mTTx/a)  sin(nny/a) (E.10) 
n=l    n=l 
odd only 

i  m, n 
m=l n=l   ' 

Ther. the strain energy is 

00    CO 

v    -    ICT     £     £     <P8      C(m2+n2)2 + (maN +n2N +2mnN    ) ^L (E.ll) 8a•*     *•*     ~     T ra.n  N x      x        y xy    TT'D x 

m=l n=l    ' *     ' 

The kinetic energy is 

m=l n=l 

where 

V   is the unit weight of the plate 

h   is the plate thickness. 

By equating the maximum values for each mode of T and V and assuming that 

the motion is sinusoidal, we can obtain the following equation for fre- 

quency : 

U)    « £j V gD/VL [(m2+n2)2 + (ra2N +n2N +2mnN  )aa/"2D]x'2 

Again, let N = N . H  =--0. Then 
'     x   y'  xy 

U) m. n =   T^gD/U fm8+na) [l+aaN /**D(m*+na)J1/2 (F.13) 

The factor In Eq. E.13 raised to the one-half power contains the effect 

of the in-plane stresses.    As might be expected,  this  is the same fac+nr 

which entered the expression for the change in amplitude as a  function 

of in-plane stresses.    If the change in frequency is known for the funda- 

mental mode,   then Eq. E.13 permits a computation of the change for all 

modes.    That is,   if B(m,n)  is the ratio of frequencies in the nonlinear 

and linear cases,   then 
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B_(m,n) = V1 + 2[Bw
8(l,l)-l]/(»a+n8) E (E.14) 

Some sample results with Eq. E.14 are provided in Table F.2. Note that 

the same values of membrane stress. N • are used in Tables E.l and E.2, 
' x' 

There is evidently very little change in the frequency of the higher modes. 

TABLE E.2 

FREQUENCY INCREASE FOR HIGHER MODES 

Mode Frequency Ratio N a8/"aD(m2+n2) 

1,1 1.20 (assumed) 0.428 

1,3 and   J,l 1.04 0.086 

3,3 1.025 0.048 

3,5 and 5,3 1.01 0.025 

The two analyses above have shown that the contribution of the higher 

aiedes to deflections and stresses are very little effected by the non- 

linearities. Therefore it is suggested that, for purposes of estimation, 

the linear contributions of the higher modes be assumed to be valid for 

large deflections also. 
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PROGRAM  NONLINEAR WINDOW 

BEGIN COMMENT      LYNN SEAMAN EXT 3587 
PROGRAM 3F KRIEBEL WAS MODIFIED BY SEAMAN (JAN 67) TO CALCULATE THE 
RESPONSE  OF A 1 DOF WINDOW TO AN N-WAVE PRESSURE PULSE.  PROGRAM USES 
RUNGEKUTTA METHOD AS A STARTER AND CONTINUES WITH ADAMS PREDICTOR- 
CORRECTOR METHOD. 

DATA IS ENTERED ON TWO GROUPS OF CARD5: ONE FOR ITER» ONE FOR XI» 
ABSCISSA» FINAL AND EPS.  ITER IS THE NUMBER OF CASES TO BE HANDLED AND 
EQUALS THE NUMBER OF DATA CAROS TO FOLLOW.  XI IS THE STATIC DEFLECTION» 
ABSCISSA = 0MEGATAU/2PI» FINAL IS THE LAST TIME FOR WHICH A CALCULATION 
IS MADE» AND EPS IS THE COEFFICIENT OF THE NONLINEAR (CUBIC) TERMI 

COMMENT SAMPLE DATA CARDS 
1» 
3.0*   l.fl»   1,5,   0.129» END SAMPLE* 
REAL INTIME »HZER0»INITIAL»FINAL»PRINT»PELB»A-»SB»DELTAT» 

ABSCISSA»XItOMEGA»EPS»UELTA»ALFA»DXII 
II»JJ»SIZE»NFIN»ITER*IC» 

YINITIAL»YFINALC1:23» 
CR   (1.15)1 
LP  «»(l»15)l 
CLOCK (X36»"CALCULATION TIME OF PROGRAM =M»F9.2»X3» 

"SECONDS-»X36>I 
• TIME (1)1 
NF1N*1I  OELTAT«-1.0»  INITIALS.01  RELB»0.001»  ABSB*0.001f 

<CKr/»ITER)l 
FOR IC»1 STEP 1 UNTIL ITER 
DO BEGIN 
OMEGA«-0l  ALFA*0I  DELTA*0I  EPS*0» 
FOR l!»l STEP 1 UNTIL 2 DO YINITIALCIIJ • 0» 
REAP  (CR»/»XI»ABSCISSA»FINAL»EPSH 
HZERO • 1.0/(60.0XABSCISSA)>  PRINT • HZEROI 
OMEGA + ABSCISSAx6.2832» 
ALFA • (XI+EPSxXI*3)X0MEGA*2l 
BEGIN 
REAL TESTIME1»TESTIME2»TP) 
KEAL ARRAY INFC0INFIN3J 
HEAL PROCEDURE    FINPUT (T»FIN)> 
VALUE        Tl 
REAL Tl 
REAL ARRAY   FINC0 3I 
BEGIN   COMMENT  SECOND ORDER INTERPOLATION OF INPUT ACCELERATION. 

USE OF FORWARD DIFFERENCES» 
REAL IR»R»R1»R2S 
INTEGER      11,111,1121 
IF TSTESTIME1 THEN BEGIN 
IR    • T/DELTATJ 
II * ENTIER (IR)I 
H a. TO-TTl 

IF ABS(R)i8-06THEN 
FINPUT     •• FINCH] 

ELSE BEGIN 
IF T<TESTIME2     THEN BEGIN 
III • 11*11 

INTEGER 
REAL ARRAY 
FILE 
FILE 
FORMAT OUT 

INTIME   • 
S!ZE«-2» 
READ 
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112 *   111*11 
Kl •   1-RI 
R2 *•  2-R» 
F1NPUT*   0.5XRix(R2xFINCin-RxFlNi:iI23) +RXR2XFINCIH3» 

END 
ELSE 

IF   KTtSTIrtEl THEN  BEGIN 
m •  ll+U 
Hl *•   1-RI 
HZ *  2-R! 
FINPUT ••   RlxFlNCin  + RXFINC1I13I 

END 
END 

END 
ELSE 

FINPUT  • 0» 
END OF FINPUT» 
PROCEDURE    FUNCT (TTEMP»YTEMP»DERIV>» 
REAL TTEMP» 
REAL ARRAY    YTEMP»DERlVC1Jl 
BEGIN   COMMENT   COMPUTATION OF DERIVATIVES» 
HEAL Q12»Q13» 
INTEGER       I» 
Ü12    * YTEMPll.lxYTEMPCU» 
013   • YTEMPC1JXQ12I 
DERlVti: • YTEMPC2J» 
DERIVC23 •• -(DELTA XYTEMPC23 • OMEGA*2 x(YTEMPCU • EPS xQi3>) • ALFA 

x FINPUT(TTEMP»INFC*3>» 
END OF FUNCT» 
REAL ARRAY KFORADAMSC0:3»1:303» YINCFORADAMSCI:30 31 COMMENT GOES 
BEFORE ADAMS» 
PROCEDURE  ADAMS(SIZ£» HZERO» INITIAL» FINAL» PRINT» RELB» ABSB»        AOAMS001 

YINITIAL» YFINAL» FUNCT) I 
VALUE SIZE» HZEROr INITIAL» FINAL» PRINT» RELB» ABSB I 
INTEGER  SIZE I  REAL  HZERO» INITIAL» FINAL» PRINT» RELB» ABSB t 
REAL ARRAY  YINITIAL» YFINALC13 » 
PROCEDURE  FUNCT  I 

BEGIN COMMENT  ADAMS VERSION OF APRIL 1» 195«» I 
OWN INTEGER  I» J» N I 
OWN REAL  X» H» RELTEST» ABSTEST» FACTOR I 
REAL H2«M LB» BOUND» T» TEMPX» TEMPH I  BOOLEAN  TEST I 

REAL ARHAY  Y» FC 0:<»* HSIZE3» E» YPLi:SIZE3 t 
LABEL  STARTl» START2» START3» MARCH* LASTSTEP. RETURN I 
DEFINE  LOOP1 =  FOR I •• 1 STEP i UNTIL N DO  it  ! 

FORMAT OUT   MSSG (X«*»MTHE STEP SIZE IS N0W"»E18.11)» 
SINGY 

(X30»M»*EQUATIONS CANNOT BE SOLVED WITHIN THE GIVEN ERROR BOUNDS**"*X30) 
»TITLE 

(X10»"SOLUTION OF NONLINEAR WINDOW MOTIONV//X10»"ABSCISSA s"»Fft.«*, 
X5."XI i,'»F8.<t//X8»HTlMEM»X5»MDEFLECTI0NM»X3»rtVEL0CITYM»X3»,,DEFL/XI"//l» 

FRMT   (X5»FB.<*»X«*»F8.4»Xl4»FA.tt»X?»F9-to>» 
LIST     LIST1     (ABSCISSA»XI)I 

PROCEDURE RUNGEKUTTA(YOLD» FOLD» YNEW» FUNCT) I 
REAL ARRAY YOLD» FOLD» YNEWC13 »  PROCEDURS  FUNCT | 

BEGIN 
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OEFINE K=KFORADAMSH» YINC=YlNCFORADAMS«) 
REAL  INC» H6 »  INTEGER  L I 
L • 0 I  H6 * H/6.0 I 
LOOPI  KCQ»I3 * FOLDCI3 ) 
FOR INC •• H/2.0» INC» H DO 

BEGIN  LOOPI  YINCCI3 • YOLDC 13* INCXKCL» I 3 I 
L • L +1 t     FUNCT(X+INC» YINC» KCL»*3) 

END I 
LOOPI YNEWCI3 • YOLDCI3+H6X(KCO»I3 -/2.0x(KC 1» 13+KC2» 13) +KC3»X3>! 
X • X +H 

END  RUNGEKUTTA I 
BOOLEAN PROCEDURE  ERRTEST(YP» YC» E? I 

REAL ARRAY  YP# YC» EC 13 I 
BEGIN REAL YCI» El I   LABEL RETURN I 

EHRTEST • FALSE » 
LOOPI BEGIN EC I 3 »EX» ABSUPC I 3-{YCI*YCC I 3)) I 

IF El < ABS(YCI)XRELTEST  THEN ECU * EI/ABS(YCI) 
ELSE IF  EI < ABSTEST  THEN  EC 13 • EIxFACTOR 
ELSE  BEGIN ERRTEST • TRUE I GO TO RETURN END » 

END t 
RETURN: END ERRTEST I 

COMMENT INITIALIZE T 
WRITE <LPCPAGE3)S 
WRITE (LP»TITLE»L:STDI 
N «• SIZE »   LOOPI   YC0»I3 • YINITIALCI3 I 
X •• INITIAL }     FUNCT(X* YCO»*3» FC0»*3) » 

DXI-YINITIALC1D/XI) 
WRITE (LP»FRMT»INITIAL»L00PI YLNITIALCI3»DXI)> 
BOUND • INITIAL+PRINT J 
IF (TEST* ABSB*0) THEN 

BEGIN RELTEST * l«».2xRELB »  ABSTEST •• l<*.2xABSB t 
FACTOR • RELB/ABSB »  LB • RELTEST/200.0 I 
H • PRINT    *  FOR H*0.5XH WHILE H >HZERO DO  I 

ENO 
ELSE BEGIN H^HZERO» IF H>PRINT THEN PRINT*HI GO TO START3 END 1 

COMMENT  RUNGE-KUTTA STARTING METHOD I 
STARTi:  H «• 2.0XH I 

IF X*H*FINAL THEN BEGIN J • 0 » GO TO LASTSTEP END I 
RUNGEKUTTA(YC0»*3» FC0»*3» YP» FUNCT) J X • X-H I 

START2: H • 0.5XH I 
STARTS: IF X+H=X THEN 

BEGIN    DXI • YC0»13/XII 
WRITE (LP»SINGY)I    WRITE (LP»FRMT»X»LOOPI YC0»I3#DXI)I 

GO TO RETURN 
END I 

RUNGEKUTTA<YCO»*3» F£0»*3» YC1»*3» FUNCT)! FUNCT(X» YCl»*3» FCl»«3)l 
RUNGEKUTTA(YC1»*3* FC1»*3» YC2**3* FUNCT)) 
IF TEST THEN IF ERRYESTCYP» YC2»*3» E) THEN 

BEGIN LOOPI   YPCI3 •• YCI»13 I 
X • X-H )  GO TO START2 » 

END ) 
FUNCTtX* YC2»»3» FC2»*3) ) 
WRITE (LP»MSSG »H)s 
IF X>H2FINAL THEN BEGIN  J • 2 I GO TO LASTSTE? END I 

RUNGEKUTTA(YC2»*3» FC2»*3» YC3»*3» FUNCT)»  H2«* • H/2U.0 ) 
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COMMENT     CHECK  STARTING  VALUES  FOR  PRINTING   I 
T   »   X-3.0XH   I 

FOR  J  ••   1»2»3 DO 
BEGIN     T  «•  T+H   | 

IF     T=BOUND THEN 
BEGIN BOUND^BOUNO+PRINTI     DXI   •  YEJ»13/XI> 
WRITE   <LP»PRMT»T»LOOPI   YCJ»I3»DXI)   END 

ELSE  IF  T>B0UNU-H24  THEN 
BEGIN     TEMPX  *•   X   t     TEMPH  *  H   * 

X   •   T-H   »     H  ••  BOUND-X   I 
RUNGEKUTTA(fIJ-l»*3»   FCJ-1»*3»   YP»   FUNCT)   » 
DXI   •  YPC13/XH 
WRITE   <LP»FRMT»X*LOOPI   YPCI3»DXIM 
X  •   TEMPX   I     H   ••  TEMPH   I     BOUND  •   BOUND+PRINT 

END   i 
ENO   I 

COMMENT     ADAMS MARCHING  METHOD   t 
MARCH:       FUNCTCX»   YC3»*3»   FC3»*3>   I 

IF  X+HiFINAL  THEN BEGIN     J  •  3   I   GO  TO  LASTSTEP END   I 
LOOPI       YPCn  •   YL3»I3  •H2tx(55.QxFC3»Z3 -5<?.0xFC2»I3 

•37.0xFCl»I3  -9.0xFC0»I3)   I 
X  •   X  +H   I       FUNCT(X»   YP»   FC«*»*3)   » 
LOOPI     YC«*»I3   *   YC3»I3  +H2<*x(9.0xFU» I 3  *19.0xFC3»IJ 

-5.0XFC2»I3  •FClf 13)   I 
IF  TEST  THEN   IF ERRTESTIYP;   YC<»»*3»   E)   THEN 

BEGIN     LOOPI   BEGIN  YC0»I3  «•   YC3»I3   »     FCO»I3  •  FC3»13     END   » 
X  •   X  -H   I     H  •   0.5XH   I     GO  TO  START1   I 

END   » 
IF     XsBOUND  THEN 

BEGIN BOUND*-BOUND+PRlNT   I     DXI   •  YU»13/XI> 
WRITE   (LP»FRMT»X»LOOPI   YC*»»I3»DXI)     END 

ELSE  IF  X>BOUND-H2<*  THEN 
BEGIN     TEK°X  •   X   I     TEMPH  *   H   » 

X  *  X-H   I     H  •   BOUND-X   I 
RUNGEKIJTTA(YC3»*3»   FC3»*3»   YP»   FUNCTJ   I     DXI   *   YPC13/XI» 
WRITE   JLP»FRMT»X»LOOPl   YPCI3»DXD» 
X  •   TEMPX   I     H  *  TEMPH   I     BOUND  •  BOUND+PRINT 

END   I 
LOOPI     BEGIN    YC3»I3  •   YU»I3   t     FC0»I3  •  FC1»I3   » 

FU»I3  * FC2»I3I   FC2»I3   •  FC3»I3l   FC3»I3  •  FC«f»H   » 
END   » 

COMMENT     CAN   INTERVAL H  BE DOUBLED     I 
IF   H*H>PRINT  OR  NOT  TEST  THEN     GO   TO  MARCH   t 
LOOPI     BEGIN     IF  EC 13  >  LB     THEN  GO  TO  MARCH    END     I 
LOOPI     BEGIN     YC0»I3  •   YC3.-I3   I     FLO» 13   •   FC3» 13  END   J 
H  •  2.0XH   I     GO  TO  STARTl     » 

LASTSTEP:   H  ••  FINAL-X   I     PUNGEKUTTA{YCJ»*3»   FU»*3»   YFINAL»   FUNCT)   I 
DXI   •   VFINALC13/XII 
WRITE   (LP»FRMT»X»LOOPI   YFINALCI3»DXI)t 

RETURN:     END  ADAMS   I 
TESTIME1   ••  NFINXDELTATl 
TESTIME2  t   TESTlMEi-DELTATi 
INF103  •   1.01      INFC13  •   -1.01 
ADAMS   <SIZE»HZERO»INITIAL»FINAL»PRlNT»RELB»ABSB»YINITlAL»YFINAL»FUNCTn 
END I 
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.   V 

WRITE (LPCDBLJM WRITE (LPCDBU)I WRITE <LP»CLOCK.(TIME U)-INTIME)/60>I 
END I 
CLOSE (CRrRELEASE)i 
END. 
?DATA        CR 
If 
3.0»   1.8*   1.5»   0.129» 
?ENO OF OECK 

10 6 



BIBLIOGRAPHY 

American Society for Testing Materials, Vol.  13,   1965,   p.   142. 

Bowles,  R.,  and B« Sugarman,   "The Strength and Deflection Characteristics 
of Large Rectangular Glass Panels Under Uniform Pressure," Glass Techno- 

',  Vol. 3,  No.  5,  October  1952,   p.  156-170. 

Chu,   Hu-Nan and George Herman,   "influence of Large Amplitudes on Free 
Flexural Vibrations of Rectangular Elastic Plates," Jour, of App.t. Mech., 
1956,  Vol.  23,   No. 4,   p.  532, 

Freynik,  Henry S.,  Jr.,   "The Nonlinear Response of Windows to Random 
Noise," NASA Technical Note,  NASA TN D-2025,   Dec.   1963. 

Frownfelter, C. R., "Structural Testing of Large Glass Installations," 
p. 19 of a symposium on Testing of Window Assemblies, ASTM Spec. Tech. 
Publ, No. 251,  February 1959. 

Hasselman, D. P. H., and Fulrath, R. M., "Proposed Fracture Theory of a 
Dispersion-Strengthened Glass Matrix," Jour. Am. Ceramic Soc, Vol. 49, 
February  1966,   p.  68-72. 

Levy,  Samuel,   "Bending of Rectangular Plates with Large Deflections," 
NACA Report No.  737,   1942. 

Maglieri,  D. J., V. Huckel, and T. L. Parrott,   "Ground Measurements of 
Shock-Wave Pressures for Fighter Airplanes Flying at Very Low Altitudes 
and Comments on Associated Response Phenomena," NASA Tech, Memo. No, 
X-611,  December  1961. 

McKinley,  R. Wv>   "Response of Glass in Windows to Sonic Booms," Materials 
Research and Standards,   Vol,  4,   No,   11,   November  .1984,   p.  394^-600. 

Orr,  Leighton,   "Engineering Properties of Glass,  Windows and Glass in the 
Exterior of Buildings," Pub.  478 of Bldg.  Res,   Inst,  of NAS-NRC,   1957, 
p. 51. 

PittsburgnPlate Glass Company,   "Glass Product Recommendations:   Structural, 
Technical," Service Report No.   101 of Pittsburgh Fiete Glass Company, 
Pittsburgh},   Pa., March  1964, 

Shand, B, B.,   "Glass Engineering Handbook," McGraw-Hill Book Co.,  Nov.' 
York,   1958,   p.  47-49. 

Timoshenko,  S,,   "Theory of Plates and Shells/' Second Ed., McGraw-Hill 
Book Co,,   Inc.,  N. ?,,   1959,   Chap.   13,  Large Deflection of Plates. 

Uniform Building Code, Vol.   1,   1964 Edition,   International Conference of 
Building Officials,  Pasadena,  California,  Chap. 54, 

107 

«^WWflw«*«^* *•"*e*m8ffiiit* 


